[1]
H. Aldosari, Graphene reinforced polymer matrix nanocomposites: fabrication method, properties and applications, In Graphene-A wonder material for scientists and engineers. IntechOpen, 2022.
DOI: 10.5772/intechopen.108125
Google Scholar
[2]
H. Aldosari, The Effect of Carbon/Oxygen Ratio upon Structure-Property Relationships in Polymer/Graphene Nanocomposites, Nano Hybrids and Composites. 37 (2022) 59-78.
DOI: 10.4028/p-72519w
Google Scholar
[3]
H. Aldosari, The effect of graphene oxide dispersion on structure-property relationships in graphene-based polymer nanocomposites, In Journal of Nano Research. 65(2020) 97-121.
DOI: 10.4028/www.scientific.net/jnanor.65.97
Google Scholar
[4]
H. Aldosari, Review of carbon nanotube toxicity and evaluation of possible implications to occupational and environmental health, Nano Hybrids and Composites. 40 (2023) 35-49.
DOI: 10.4028/p-4gnl3o
Google Scholar
[5]
M. Almoneef & et al., Exploring the Multi-Faceted Potential: Synthesized ZnO Nanostructure-Characterization, Photocatalysis, and Crucial Biomedical Applications, Heliyon. (2024).
DOI: 10.1016/j.heliyon.2024.e32714
Google Scholar
[6]
M. Almoneef & et al., Enhancing Biomedical and Photocatalytic Properties: Synthesis, Characterization, and Evaluation of Copper–Zinc Oxide Nanoparticles via Co-Precipitation Approach, Catalysts. 14 (2024) 641.
DOI: 10.3390/catal14090641
Google Scholar
[7]
G. Lee & et al., Difference in optical bandgap between zinc-blende and wurtzite ZnO structure formed on sapphire (0001) substrate, Solid state communications. 124 (2002) 163-165.
DOI: 10.1016/s0038-1098(02)00537-9
Google Scholar
[8]
G. Peterson & et al., Assessment of the risk of solar ultraviolet radiation to amphibians. II. In situ characterization of exposure in amphibian habitats, Environmental science & technology. 36(2002) 2859-2865.
DOI: 10.1021/es011196l
Google Scholar
[9]
T. Singh & et al., Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks, Advances in colloid and interface science. 286(2020) 102317.
DOI: 10.1016/j.cis.2020.102317
Google Scholar
[10]
M. Osmond & et al., Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard, Nanotoxicology. 4(2010)15-41.
DOI: 10.3109/17435390903502028
Google Scholar
[11]
K. B. Kim & et al., Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens, Journal of Toxicology and Environmental Health, Part B. 20 (2017) 155-182.
DOI: 10.1080/10937404.2017.1290516
Google Scholar
[12]
C. T. Chasapis & et al., Recent aspects of the effects of zinc on human health, Archives of toxicology. 94 (2020)1443-1460.
Google Scholar
[13]
M. Molenda & J. Kolmas, The role of zinc in bone tissue health and regeneration-a review, Biological Trace Element Research. 201(2023) 5640-5651.
DOI: 10.1007/s12011-023-03631-1
Google Scholar
[14]
R. A. Bozym & et al., Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro, Experimental biology and medicine.235(2010) 741-750.
DOI: 10.1258/ebm.2010.009258
Google Scholar
[15]
P. Sadhukhan & et al., Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy, Materials Science and engineering: C, 100 (2019) 129-140.
DOI: 10.1016/j.msec.2019.02.096
Google Scholar
[16]
Z. Fan & G. Lu, Zinc oxide nanostructures: synthesis and properties, Journal of nanoscience and nanotechnology. 5(2005) 1561-1573.
Google Scholar
[17]
Z. Cheng & et al., Unveiling the Biomedical Applications of Zinc Oxide (ZnO) Nanoparticles: A Review Fostering on the Synthesis, Therapeutics and Imaging with Recent Developments, Pharmaceutical Sciences. 30(2024) 398-422.
DOI: 10.34172/ps.2024.24
Google Scholar
[18]
A. Tsukazaki & et al., Quantum Hall effect in polar oxide heterostructures, Science, 315(2007) 1388-1391.
DOI: 10.1126/science.1137430
Google Scholar
[19]
M. A. Borysiewicz, ZnO as a functional material, a review, Crystals. 9 (2019) 505.
Google Scholar
[20]
M. Vaseem & et al., ZnO nanoparticles: growth, properties, and applications, Metal oxide nanostructures and their applications.5(2010) 10-20.
Google Scholar
[21]
X. Xiao & et al., A Review on the Properties of Zinc Oxide Nanoparticles in Various Industries and Biomedical Fields: Enhancing Chemical and Physical Characteristics, Iranian Journal of Chemistry and Chemical Engineering. 43(2024) 46-65.
Google Scholar
[22]
L. Wang & et al., Asymmetric Coordination of Iridium Single‐atom IrN3O Boosting Formic Acid Oxidation Catalysis, Angewandte Chemie International Edition. 62(2023) e202301711.
DOI: 10.1002/anie.202301711
Google Scholar
[23]
S. Xue & et al., Dual anionic doping strategy towards synergistic optimization of Co9S8 for fast and durable sodium storage, Energy Storage Materials. 55(2023)33-41.
DOI: 10.1016/j.ensm.2022.11.040
Google Scholar
[24]
B. Ji & et al., Coordination Chemistry of Large‐Sized Yttrium Single‐Atom Catalysts for Oxygen Reduction Reaction, Advanced Materials. 35(2023) 2300381.
DOI: 10.1002/adma.202300381
Google Scholar
[25]
H. Xia & et al., Evolution of Stabilized 1T‐MoS2 by Atomic‐Interface Engineering of 2H‐MoS2/Fe− Nx towards Enhanced Sodium Ion Storage, Angewandte Chemie. 135(2023) e202218282.
DOI: 10.1002/ange.202218282
Google Scholar
[26]
Z. Guo & et al., Innovative and green utilization of zinc-bearing dust by hydrogen reduction: Recovery of zinc and lead, and synergetic preparation of Fe/C micro-electrolysis materials, Chemical Engineering Journal. 456(2023) 141157.
DOI: 10.1016/j.cej.2022.141157
Google Scholar
[27]
Y. Liu & et al., Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. International Journal of Minerals, Metallurgy and Materials. 30 (2023) 525-535.
DOI: 10.1007/s12613-022-2491-7
Google Scholar
[28]
Z. Huang & et al., Novel one-dimensional V3S4@ NC nanofibers for sodium-ion batteries, Journal of Physics and Chemistry of Solids. 172 (2023) 111081.
DOI: 10.1016/j.jpcs.2022.111081
Google Scholar
[29]
Z. Wang & et al., Improvement of electron transfer efficiency during denitrification process by Fe-Pd/multi-walled carbon nanotubes: Possessed redox characteristics and secreted endogenous electron mediator, Science of The Total Environment. 781(2021) 146686.
DOI: 10.1016/j.scitotenv.2021.146686
Google Scholar
[30]
H. Duan & et al., Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning, European radiology. 32 (2022) 702-713.
DOI: 10.1007/s00330-021-08126-y
Google Scholar
[31]
S. Lu & et al., An asymmetric encoder-decoder model for Zn-ion battery lifetime prediction, Energy Reports, 8(2022) 33-50.
DOI: 10.1016/j.egyr.2022.09.211
Google Scholar
[32]
Y. Wang & et al., Surface-functionalized design of blood-contacting biomaterials for preventing coagulation and promoting hemostasis, Friction. 11(2023) 1371-1394.
DOI: 10.1007/s40544-022-0710-x
Google Scholar
[33]
W. Hao & J. Xie, Reducing diffusion-induced stress of bilayer electrode system by introducing pre-strain in a lithium-ion battery, Journal of Electrochemical Energy Conversion and Storage. 18(2021) 020909.
DOI: 10.1115/1.4049238
Google Scholar
[34]
L. Li & et al., Improved strategies for separators in zinc‐ion batteries, ChemSusChem. 16(2023), e202202330.
Google Scholar
[35]
S. Ghosh & et al., Microbial nano-factories: synthesis and biomedical applications, Frontiers in Chemistry. 9(2021) 626834.
Google Scholar
[36]
A. F. Halbus & et al., Surface-modified zinc oxide nanoparticles for antialgal and anti-yeast applications, ACS Applied Nano Materials, 3(2020) 440-451.
DOI: 10.1021/acsanm.9b02045
Google Scholar
[37]
X. Q. Zhou & et al., Zinc oxide nanoparticles: synthesis, characterization, modification, and applications in food and agriculture, Processes. 11(2023)1193.
Google Scholar
[38]
A. Singh & M. Kaushik, Physicochemical investigations of zinc oxide nanoparticles synthesized from Azadirachta Indica (Neem) leaf extract and their interaction with Calf-Thymus DNA, Results in Physics. 13(2019) 102168.
DOI: 10.1016/j.rinp.2019.102168
Google Scholar
[39]
P. Somu & et al., Multifunctional biogenic Al-doped zinc oxide nanostructures synthesized using bio reductant chaetomorpha linum extricate exhibit excellent photocatalytic and bactericidal ability in industrial effluent treatment, Biomass Conversion and Biorefinery. (2022) 1-16.
DOI: 10.1007/s13399-022-03474-1
Google Scholar
[40]
V. N. Kalpana & V. Devi Rajeswari, A review on green synthesis, biomedical applications, and toxicity studies of ZnO NPs, Bioinorganic chemistry and applications. 1(2018) 3569758.
DOI: 10.1155/2018/3569758
Google Scholar
[41]
B Lallo da Silva & et al., Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: An overview, International journal of nanomedicine. (2019) 9395-9410.
DOI: 10.2147/ijn.s216204
Google Scholar
[42]
D.D Zhang & et al., Construction of ZnO@ mSiO2 antibacterial nanocomposite for inhibition of microorganisms during Zea mays storage and improving the germination, LWT. 168(2022)113907.
DOI: 10.1016/j.lwt.2022.113907
Google Scholar
[43]
Y. Liang & et al., Organozinc precursor-derived crystalline ZnO nanoparticles: Synthesis, characterization and their spectroscopic properties, Nanomaterials. 8(2018) 22.
DOI: 10.3390/nano8010022
Google Scholar
[44]
M. Tavakolian & et al., A review on surface-functionalized cellulosic nanostructures as biocompatible antibacterial materials, Nano-Micro Letters. 12(2020)1-23.
DOI: 10.1007/s40820-020-0408-4
Google Scholar
[45]
T. Amakali & et al., Structural and optical properties of ZnO thin films prepared by molecular precursor and sol-gel methods, Crystals. 10(2020) 132.
DOI: 10.3390/cryst10020132
Google Scholar
[46]
T. H. Liou & et al., Sustainable utilization of rice husk waste for preparation of ordered nanostructured mesoporous silica and mesoporous carbon: Characterization and adsorption performance, Colloids and Surfaces A: Physicochemical and Engineering Aspects. 636 (2022) 128150.
DOI: 10.1016/j.colsurfa.2021.128150
Google Scholar
[47]
X. Mao & et al., Dispersive solid-phase extraction using microporous metal-organic framework UiO-66: Improving the matrix compounds removal for assaying pesticide residues in organic and conventional vegetables, Food Chemistry. 345(2021) 128807.
DOI: 10.1016/j.foodchem.2020.128807
Google Scholar
[48]
D. Comandella & et al., Quality of physicochemical data on nanomaterials: an assessment of data completeness and variability, Nanoscale. 12(2020) 4695-4708.
DOI: 10.1039/c9nr08323e
Google Scholar
[49]
M. Ahamad Khan & et al., Phytogenically synthesized zinc oxide nanoparticles (ZnO-NPs) potentially inhibit the bacterial pathogens: in vitro studies, Toxics. 11(2023) 452.
DOI: 10.3390/toxics11050452
Google Scholar
[50]
S. Dwivedi& et al., Reactive oxygen species-mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination, PloS one. 9 (2014) e111289.
DOI: 10.1371/journal.pone.0111289
Google Scholar
[51]
J.F. Hernández-Sierra& et al., The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold, Nanomedicine: Nanotechnology, Biology and Medicine. 4(2008) 237-240.
DOI: 10.1016/j.nano.2008.04.005
Google Scholar
[52]
B. Aydin Sevinç & L. Hanley, Antibacterial activity of dental composites containing zinc oxide nanoparticles, Journal of Biomedical Materials Research Part B: Applied Biomaterials. 94(2010) 22-31.
DOI: 10.1002/jbm.b.31620
Google Scholar
[53]
S. Sarwar & et al., The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype, Nanomedicine: Nanotechnology, Biology and Medicine, 12(2016), 1499-1509.
DOI: 10.1016/j.nano.2016.02.006
Google Scholar
[54]
J.M. Islam& et al., Textiles in cosmetics and personal care, In Medical Textiles from Natural Resources (2022) 457-497.
DOI: 10.1016/b978-0-323-90479-7.00022-1
Google Scholar
[55]
S. Dey& et al., A critical review on zinc oxide nanoparticles: Synthesis, properties and biomedical applications, Intelligent Pharmacy. (2024).
Google Scholar
[56]
H. Mohd Yusof & et al., Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review, Journal of Animal Science and biotechnology.10 (2019)1-22.
DOI: 10.1186/s40104-019-0368-z
Google Scholar
[57]
M. Baek, & et al., Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles, International journal of nanomedicine. (2012) 3081-3097.
Google Scholar
[58]
F. Muhammad & et al., pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids, Journal of the American Chemical Society. 133(2011) 8778-8781.
DOI: 10.1021/ja200328s
Google Scholar
[59]
M. Mohammed & et al., Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications, Al-Rafidain Journal of Engineering Sciences. (2024) 185-202.
DOI: 10.61268/c40js505
Google Scholar
[60]
H. Sharma & et al., Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artificial cells, nanomedicine, and biotechnology, 44(2016) 672-679.
DOI: 10.3109/21691401.2014.978980
Google Scholar
[61]
M. Martínez-Carmona & et al., ZnO nanostructures for drug delivery and theranostic applications, Nanomaterials. 8 (2018) 268.
DOI: 10.3390/nano8040268
Google Scholar
[62]
A. Mohandas & et al., Exploration of alginate hydrogel/nano zinc oxide composite bandages for infected wounds, International Journal of nanomedicine. 10(2015) 53-66.
DOI: 10.2147/ijn.s79981
Google Scholar
[63]
G. Daeschlein, Antimicrobial and antiseptic strategies in wound management, International wound journal. 10(2013) 9-14.
DOI: 10.1111/iwj.12175
Google Scholar
[64]
S. Aoki & et al., Application of poly-L-lactic acid nanosheet as a material for wound dressing, Plastic and reconstructive surgery. 131(2013) 236-240.
DOI: 10.1097/prs.0b013e3182789c79
Google Scholar
[65]
A. M. Díez-Pascual & A.L. Díez-Vicente, Wound healing nanocomposites based on castor oil polymeric films reinforced with chitosan-modified ZnO nanoparticles, Biomacromolecules. 16(2015) 2631-2644.
DOI: 10.1021/acs.biomac.5b00447
Google Scholar
[66]
V. Valdiglesias & et al., Effects of zinc oxide nanoparticle exposure on human glial cells and zebrafish embryos, International Journal of Molecular Sciences. 24(2023) 12297.
DOI: 10.3390/ijms241512297
Google Scholar
[67]
J. Han & et al., Potential dissolution and photo-dissolution of ZnO thin films. Journal of hazardous materials, 178(2010) 115-122.
DOI: 10.1016/j.jhazmat.2010.01.050
Google Scholar
[68]
R. Bacchetta & et al., Role of soluble zinc in ZnO nanoparticle cytotoxicity in Daphnia magna: A morphological approach, Environmental research. 148 (2016) 376-385.
DOI: 10.1016/j.envres.2016.04.028
Google Scholar
[69]
M. Premanathan & et al., Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation, Nanomedicine: Nanotechnology, Biology and Medicine. 7(2011) 184-192.
DOI: 10.1016/j.nano.2010.10.001
Google Scholar
[70]
I. Kim & et al., ZnO nanostructures in active antibacterial food packaging: preparation methods, antimicrobial mechanisms, safety issues, future prospects, and challenges, Food Reviews International. 38(2022) 537-565.
DOI: 10.1080/87559129.2020.1737709
Google Scholar
[71]
B.C Heng & et al., Evaluation of the cytotoxic and inflammatory potential of differentially shaped zinc oxide nanoparticles, Archives of toxicology. 85(2011)1517-1528.
DOI: 10.1007/s00204-011-0722-1
Google Scholar
[72]
C. Hanley & et al., The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction, Nanoscale research letters. 4(2009) 1409-1420.
DOI: 10.1007/s11671-009-9413-8
Google Scholar
[73]
N. Zhang & et al., Toxicity of metal-based nanoparticles: Challenges in the nano era, Frontiers in Bioengineering and Biotechnology. 10(2022) 1001572.
Google Scholar
[74]
A.F. Aravantinou & et al., Long-term toxicity of ZnO nanoparticles on Scenedesmus rubescens cultivated in semi-batch mode, Nanomaterials. 10(2020) 2262.
DOI: 10.3390/nano10112262
Google Scholar
[75]
M. T. El-Saadony& et al., Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications-A Review, International Journal of Nanomedicine. (2024) 12889-12937.
DOI: 10.2147/ijn.s487188
Google Scholar
[76]
J.W. Rasmussen & et al., Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications, Expert opinion on drug delivery. 7(2010) 1063-1077.
DOI: 10.1517/17425247.2010.502560
Google Scholar
[77]
H. Müller & et al., pH-dependent toxicity of high aspect ratio ZnO nanowires in macrophages due to intracellular dissolution, ACS nano. 4(2010) 6767-6779.
DOI: 10.1021/nn101192z
Google Scholar
[78]
C. Hanley & et al., Preferential killing of cancer cells and activated human T cells using ZnO nanoparticles, Nanotechnology, 19(2008) 295103.
DOI: 10.1088/0957-4484/19/29/295103
Google Scholar
[79]
S. George& et al., Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping, ACS nano. 4(2010) 15-29.
DOI: 10.1021/nn901503q
Google Scholar
[80]
S. Nair & et al., Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells, Journal of Materials Science: Materials in Medicine. 20(2009) 235-241.
DOI: 10.1007/s10856-008-3548-5
Google Scholar
[81]
A. Sirelkhatim & et al., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism,Nano-micro letters, 7(2015) 219-242.
DOI: 10.1007/s40820-015-0040-x
Google Scholar