Preparation of High-Performance Antimonene Thermoelectric Composites Doped with Graphene

Article Preview

Abstract:

Thermoelectric materials are valued for their ability to convert waste heat into electrical energy. Antimonene nanosheets (AnNS) have recently emerged as a promising thermoelectric material due to their unique two-dimensional structure. However, developing efficient and scalable methods for preparing AnNS-based thermoelectric composites with improved performance remains challenging. In this study, we developed an efficient and environmentally friendly method for preparing antimonene nanosheet (AnNS)/graphene platelets (GNPs) composites using ultrasonic dispersion in an ethanol-based system, followed by thin film fabrication via cold-pressing. Atomic Force Microscopy (AFM) was used to characterize the microstructure and thickness of the nanosheets, while Scanning Electron Microscopy (SEM) images revealed the contact structures at different GNP concentrations. The characterization of the thermoelectric composites involved techniques such as X-ray diffraction (XRD) and Raman spectroscopy. The thermoelectric (TE) performance of the composites was systematically evaluated across different GNP volume fractions. Composites containing 1 vol% GNPs exhibited the highest electrical conductivity, measured at 2158.22 ± 25.5 S/cm, along with a Seebeck coefficient of 27.17 ± 0.15 µV/K, yielding a power factor of 159.34 ± 5.6 µW/m·K². When these composite films were integrated into a thermoelectric generator (TEG) and exposed to a human body temperature gradient of 11 °C, they produced a continuous voltage of 43.62 mV and a current of 0.21925 µA, yielding an output power of 9.56 nW. Additionally, the corrosion resistance of the composites was assessed, revealing that the 1 vol% GNPs composite exhibited superior performance compared to other compositions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-54

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X. Li, Y. Lu, K. Cai, M. Gao, Y. Li, Z. Wang, M. Wu, P. Wei, W. Zhao, Y. Du, S. Shen, Exceptional power factor of flexible Ag/Ag2Se thermoelectric composite films, CEJ. 434 (2022): 134739.

DOI: 10.1016/j.cej.2022.134739

Google Scholar

[2] L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu, D. Hui, S. Wang, Polymer Composites-Based Thermoelectric Materials and Devices, Compos. Part B, Eng. 122 (2017) 145-155.

DOI: 10.1016/j.compositesb.2017.04.019

Google Scholar

[3] L. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Sci. 321.5895 (2008) 1457-1461.

DOI: 10.1126/science.1158899

Google Scholar

[4] J. Yang, F. Stabler, Automotive Applications of Thermoelectric Materials, J. Electron. Mater. 38.7 (2009) 1245-1251.

Google Scholar

[5] S. Han, S. Li, X. Zhang, D. Liu, S. Guo, B. Wang, Q. Meng, Enhancing the Protective Performance of Anti-Impact, Corrosion Resistant and Flame Retardant Polyurea Coatings Using Bio-Based Supramolecular Decorated Montmorillonite, CBM. 435 (2024).

DOI: 10.1016/j.conbuildmat.2024.136721

Google Scholar

[6] Q. Meng, Y. Fu, Y. Dong, B. Meng, J. Liu, B. Wang, S. Han, Enhanced mechanical and anti‐corrosion performance of polyurea nanocomposite coatings via amino‐functionalization of boron carbide nanosheets, Polym. Composite. (2025).

DOI: 10.1002/pc.29671

Google Scholar

[7] Q. Meng, Y. Zhu, S. Li, K. Zhao, S. Araby, S. Han, Aramid Nanofiber-Reinforced Graphene Oxide Frameworks for Durable and Flame-Resistant Fire Warning Sensors, J. Mater. Res. Technol. (2025).

DOI: 10.1016/j.jmrt.2025.02.042

Google Scholar

[8] Q. Meng, T. Chi, S. Guo, M. Razbin, S. Wu, S. He, S. Han, S. Peng, Highly sensitive strain sensors with ultra-low detection limit based on pre-defined serpentine cracks, Mater. Horiz. 12.1 (2025) 178-189.

DOI: 10.1039/d4mh01136h

Google Scholar

[9] S. Zheng, S. Xiao, K. Peng, Y. Pan, X. Yang, X. Lu, G. Han, B. Zhang, Z. Zhou, G. Wang, X. Zhou, Symmetry-Guaranteed High Carrier Mobility in Quasi-2D Thermoelectric Semiconductors, Adv. Mater. 35.10 (2022).

DOI: 10.1002/adma.202210380

Google Scholar

[10] M. Lee, J. Ahn, J. H. Sung, H. Heo, S. G. Jeno, W. Lee, J. Y. Song, K. Hong, B. Choi, S. Lee, M. Jo, Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity, NC. 7.1 (2016): 12011.

DOI: 10.1038/ncomms12011

Google Scholar

[11] Z. Zheng, X. Shi, D. Ao, W. Liu, M. Li, L. Kou, Y. Chen, F. Li, M. Wei, G. Liang, P. Fan, G. Qing, Harvesting Waste Heat with Flexible Bi2Te3 Thermoelectric Thin Film, NAT. SUSTAIN. 6.2 (2023) 180-191.

DOI: 10.1038/s41893-022-01003-6

Google Scholar

[12] X. Liu, X. Shi, L. Zhang, W. Liu, Y. Yang, Z. Chen, One-step Post-Treatment Boosts Thermoelectric Properties of PEDOT: PSS Flexible Thin Films, JMST. 132 (2023) 81-89.

DOI: 10.1016/j.jmst.2022.05.047

Google Scholar

[13] W. Chen, X. Shi, J. Zou, Z. Chen, Thermoelectric Coolers for On-Chip Thermal Management: Materials, Design, and Optimization, MS&ER‌‌. 151 (2022).

Google Scholar

[14] X. Xiong, L. Zhu, G. Wang, D. Liu, Q. Zhang, W. Feng, Microstructure and Properties of N-Type Bi2Te3-based Thermoelectric Material Fabricated by Selective Laser Sintering, Mater. res. express. 7.6 (2020).

DOI: 10.1088/2053-1591/ab81be

Google Scholar

[15] Y. Shi, H. Li, J. Wong, X. Zhang, Y. Wang, H. Song, H. Yang, MoS2 Surface Structure Tailoring Via Carbonaceous Promoter, Sci. rep. 5.1 (2015).

DOI: 10.1038/srep10378

Google Scholar

[16] G. Guo, Classification and Thermoelectric Properties of Thermoelectric Materials, MSE. 14.07 (2024) 1104-1109.

Google Scholar

[17] S. Sharma, S. Kumar, U. Schwingenschlogl, Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit, Phys. rev. appl. 8.4 (2017).

DOI: 10.1103/physrevapplied.8.044013

Google Scholar

[18] Y. Wu, B. Hou, C. Ma, J. Cao, Y. Chen, Z. Lu, H. Mei, H. Shao, Y. Xu, H. Zhu, Z. Fang, R. Zhang, Thermoelectric performance of 2D materials: the band. convergence strategy and strong intervalley scatterings, Mater. Horiz. 8.4 (2021) 1253-6.

DOI: 10.1039/d0mh01802c

Google Scholar

[19] S. Sundar, J. Chakravarty, Antimony toxicity. IJEROH. 7.12 (2010) 4267-4277. https:/doi.org1.

DOI: 10.3390/ijerph7124267

Google Scholar

[20] Q. Wu, Y. Song, The Environmental Stability of Large-Size and Single-Crystalline Antimony Flakes Grown by Chemical Vapor Deposition on SiO2 Substrates, Chem. Comm. 54.69 (2018) 9671-9674.

DOI: 10.1039/c8cc04966a

Google Scholar

[21] L. Peng, S. Ye, J. Song, J. Qu, Solution‐Phase Synthesis of Few‐Layer Hexagonal Antimonene Nanosheets Via Anisotropic Growth, Angew. Chem. Int. Ed. 131.29 (2019) 9996-10001.

DOI: 10.1002/ange.201900802

Google Scholar

[22] S. Zhu, Y. Shao, E. Wang, L. Cao, X. Li, Liu, C. Liu, L. Liu, J. Wang, K. Ibrahim, J. Sun, Y. Wang, Evidence of Topological Edge States in Buckled Antimonene Monolayers, Nano Lett. 19.9 (2019) 6323-6329.

DOI: 10.1021/acs.nanolett.9b02444

Google Scholar

[23] X. Sun, Y. Liu, Z. Song, Y. Li, W. Wang, H. Lin, L. Wang, Y. Li, Structures, Mobility and Electronic Properties of Point Defects in Arsenene, Antimonene and an Antimony Arsenide Alloy, J. mater. chem. C. 5.17 (2017) 4159-4166.

DOI: 10.1039/c7tc00306d

Google Scholar

[24] Q. Meng, F. Meng, Y. Yu, J. Alam, S. Han, S. Chen, J. Ma, Preparation of Antimonene Nanosheets and Their Thermoelectric Nanocomposites, Compos. Commun. 28 (2021) 100968-100968.

DOI: 10.1016/j.coco.2021.100968

Google Scholar

[25] A. K. GEIM, Graphene: status and prospects, sci. 324.5934 (2009): 1530-1534.

DOI: 10.1126/science.1158877

Google Scholar

[26] M. Li, D. Cortie, J. Liu, D. Yu, S. Islam, L. Zhao, D. Mitchell, R. Mole, M. Cortie, S. Dou, X. Wang, Ultra-high Thermoelectric Performance in Graphene Incorporated Cu2Se: Role of Mismatching Phonon Modes, Nano Energy. 53 (2018) 993-1002.

DOI: 10.1016/j.nanoen.2018.09.041

Google Scholar

[27] J. Gobpant, N. Somdock, P. Limsuwan, A. Sakulkalavek, R. Sakdanuphab, Graphene Addition Improved Figure of Merit in SnTe Prepared by the Rapid Hybrid Microwave Solid-State Method, J. Phys. Chem. Solids. 161 (2021) 110490-110490.

DOI: 10.1016/j.jpcs.2021.110490

Google Scholar

[28] Y. Lu, Y. Ding, Y. Qiu, K. Cai, Q. Yao, H. Song, L. Tong, J. He, L. Chen, Good Performance and Flexible PEDOT: PSS/Cu2Se Nanowire Thermoelectric Composite Films, ACS appl. mater. interfaces. 11.13 (2019) 12819-12829.

DOI: 10.1021/acsami.9b01718

Google Scholar

[29] Fitriani, S. Said, S. Rozali, M. Salleh, M. Sabri, D. Bui, T. Nakayama, O. Raihan, M. Hasnan, M. Bashir, F. Kamal, Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds, Electron. Mater. Lett. 14.6 (2018) 689-699.

DOI: 10.1007/s13391-018-0072-8

Google Scholar

[30] D. Liu, Z. Yan, Y. Zhao, Z. Zhang, Y. Zhen, B. Zhang, P. Shi, C. Xue, Facile MWCNTs-SnSe/ PEDOT: PSS Ternary Composite Flexible Thermoelectric Films Optimized by Cold-Pressing, J. Mater. Res. Technol. 15 (2021) 4452-4460.

DOI: 10.1016/j.jmrt.2021.10.075

Google Scholar

[31] J. Shi, H. Chen, S. Jia, W. Wang, Rapid and Low-Cost Fabrication of Thermoelectric Composite Using Low-Pressure Cold Pressing and Thermocuring Methods, ML. 212 (2017) 299-302.

DOI: 10.1016/j.matlet.2017.10.087

Google Scholar

[32] F. Meng, Q. Meng, F. Guo, J. Alam, J. Ma, Bismuthene nanosheets prepared by an environmentally friendly method and their thermoelectric epoxy nanocomposites, Adv. Ind. Eng. Poly. Res. 7.2 (2024) 226-233.

DOI: 10.1016/j.aiepr.2023.06.003

Google Scholar