[1]
X. Li, Y. Lu, K. Cai, M. Gao, Y. Li, Z. Wang, M. Wu, P. Wei, W. Zhao, Y. Du, S. Shen, Exceptional power factor of flexible Ag/Ag2Se thermoelectric composite films, CEJ. 434 (2022): 134739.
DOI: 10.1016/j.cej.2022.134739
Google Scholar
[2]
L. Wang, Y. Liu, Z. Zhang, B. Wang, J. Qiu, D. Hui, S. Wang, Polymer Composites-Based Thermoelectric Materials and Devices, Compos. Part B, Eng. 122 (2017) 145-155.
DOI: 10.1016/j.compositesb.2017.04.019
Google Scholar
[3]
L. Bell, Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems, Sci. 321.5895 (2008) 1457-1461.
DOI: 10.1126/science.1158899
Google Scholar
[4]
J. Yang, F. Stabler, Automotive Applications of Thermoelectric Materials, J. Electron. Mater. 38.7 (2009) 1245-1251.
Google Scholar
[5]
S. Han, S. Li, X. Zhang, D. Liu, S. Guo, B. Wang, Q. Meng, Enhancing the Protective Performance of Anti-Impact, Corrosion Resistant and Flame Retardant Polyurea Coatings Using Bio-Based Supramolecular Decorated Montmorillonite, CBM. 435 (2024).
DOI: 10.1016/j.conbuildmat.2024.136721
Google Scholar
[6]
Q. Meng, Y. Fu, Y. Dong, B. Meng, J. Liu, B. Wang, S. Han, Enhanced mechanical and anti‐corrosion performance of polyurea nanocomposite coatings via amino‐functionalization of boron carbide nanosheets, Polym. Composite. (2025).
DOI: 10.1002/pc.29671
Google Scholar
[7]
Q. Meng, Y. Zhu, S. Li, K. Zhao, S. Araby, S. Han, Aramid Nanofiber-Reinforced Graphene Oxide Frameworks for Durable and Flame-Resistant Fire Warning Sensors, J. Mater. Res. Technol. (2025).
DOI: 10.1016/j.jmrt.2025.02.042
Google Scholar
[8]
Q. Meng, T. Chi, S. Guo, M. Razbin, S. Wu, S. He, S. Han, S. Peng, Highly sensitive strain sensors with ultra-low detection limit based on pre-defined serpentine cracks, Mater. Horiz. 12.1 (2025) 178-189.
DOI: 10.1039/d4mh01136h
Google Scholar
[9]
S. Zheng, S. Xiao, K. Peng, Y. Pan, X. Yang, X. Lu, G. Han, B. Zhang, Z. Zhou, G. Wang, X. Zhou, Symmetry-Guaranteed High Carrier Mobility in Quasi-2D Thermoelectric Semiconductors, Adv. Mater. 35.10 (2022).
DOI: 10.1002/adma.202210380
Google Scholar
[10]
M. Lee, J. Ahn, J. H. Sung, H. Heo, S. G. Jeno, W. Lee, J. Y. Song, K. Hong, B. Choi, S. Lee, M. Jo, Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity, NC. 7.1 (2016): 12011.
DOI: 10.1038/ncomms12011
Google Scholar
[11]
Z. Zheng, X. Shi, D. Ao, W. Liu, M. Li, L. Kou, Y. Chen, F. Li, M. Wei, G. Liang, P. Fan, G. Qing, Harvesting Waste Heat with Flexible Bi2Te3 Thermoelectric Thin Film, NAT. SUSTAIN. 6.2 (2023) 180-191.
DOI: 10.1038/s41893-022-01003-6
Google Scholar
[12]
X. Liu, X. Shi, L. Zhang, W. Liu, Y. Yang, Z. Chen, One-step Post-Treatment Boosts Thermoelectric Properties of PEDOT: PSS Flexible Thin Films, JMST. 132 (2023) 81-89.
DOI: 10.1016/j.jmst.2022.05.047
Google Scholar
[13]
W. Chen, X. Shi, J. Zou, Z. Chen, Thermoelectric Coolers for On-Chip Thermal Management: Materials, Design, and Optimization, MS&ER. 151 (2022).
Google Scholar
[14]
X. Xiong, L. Zhu, G. Wang, D. Liu, Q. Zhang, W. Feng, Microstructure and Properties of N-Type Bi2Te3-based Thermoelectric Material Fabricated by Selective Laser Sintering, Mater. res. express. 7.6 (2020).
DOI: 10.1088/2053-1591/ab81be
Google Scholar
[15]
Y. Shi, H. Li, J. Wong, X. Zhang, Y. Wang, H. Song, H. Yang, MoS2 Surface Structure Tailoring Via Carbonaceous Promoter, Sci. rep. 5.1 (2015).
DOI: 10.1038/srep10378
Google Scholar
[16]
G. Guo, Classification and Thermoelectric Properties of Thermoelectric Materials, MSE. 14.07 (2024) 1104-1109.
Google Scholar
[17]
S. Sharma, S. Kumar, U. Schwingenschlogl, Arsenene and Antimonene: Two-Dimensional Materials with High Thermoelectric Figures of Merit, Phys. rev. appl. 8.4 (2017).
DOI: 10.1103/physrevapplied.8.044013
Google Scholar
[18]
Y. Wu, B. Hou, C. Ma, J. Cao, Y. Chen, Z. Lu, H. Mei, H. Shao, Y. Xu, H. Zhu, Z. Fang, R. Zhang, Thermoelectric performance of 2D materials: the band. convergence strategy and strong intervalley scatterings, Mater. Horiz. 8.4 (2021) 1253-6.
DOI: 10.1039/d0mh01802c
Google Scholar
[19]
S. Sundar, J. Chakravarty, Antimony toxicity. IJEROH. 7.12 (2010) 4267-4277. https:/doi.org1.
DOI: 10.3390/ijerph7124267
Google Scholar
[20]
Q. Wu, Y. Song, The Environmental Stability of Large-Size and Single-Crystalline Antimony Flakes Grown by Chemical Vapor Deposition on SiO2 Substrates, Chem. Comm. 54.69 (2018) 9671-9674.
DOI: 10.1039/c8cc04966a
Google Scholar
[21]
L. Peng, S. Ye, J. Song, J. Qu, Solution‐Phase Synthesis of Few‐Layer Hexagonal Antimonene Nanosheets Via Anisotropic Growth, Angew. Chem. Int. Ed. 131.29 (2019) 9996-10001.
DOI: 10.1002/ange.201900802
Google Scholar
[22]
S. Zhu, Y. Shao, E. Wang, L. Cao, X. Li, Liu, C. Liu, L. Liu, J. Wang, K. Ibrahim, J. Sun, Y. Wang, Evidence of Topological Edge States in Buckled Antimonene Monolayers, Nano Lett. 19.9 (2019) 6323-6329.
DOI: 10.1021/acs.nanolett.9b02444
Google Scholar
[23]
X. Sun, Y. Liu, Z. Song, Y. Li, W. Wang, H. Lin, L. Wang, Y. Li, Structures, Mobility and Electronic Properties of Point Defects in Arsenene, Antimonene and an Antimony Arsenide Alloy, J. mater. chem. C. 5.17 (2017) 4159-4166.
DOI: 10.1039/c7tc00306d
Google Scholar
[24]
Q. Meng, F. Meng, Y. Yu, J. Alam, S. Han, S. Chen, J. Ma, Preparation of Antimonene Nanosheets and Their Thermoelectric Nanocomposites, Compos. Commun. 28 (2021) 100968-100968.
DOI: 10.1016/j.coco.2021.100968
Google Scholar
[25]
A. K. GEIM, Graphene: status and prospects, sci. 324.5934 (2009): 1530-1534.
DOI: 10.1126/science.1158877
Google Scholar
[26]
M. Li, D. Cortie, J. Liu, D. Yu, S. Islam, L. Zhao, D. Mitchell, R. Mole, M. Cortie, S. Dou, X. Wang, Ultra-high Thermoelectric Performance in Graphene Incorporated Cu2Se: Role of Mismatching Phonon Modes, Nano Energy. 53 (2018) 993-1002.
DOI: 10.1016/j.nanoen.2018.09.041
Google Scholar
[27]
J. Gobpant, N. Somdock, P. Limsuwan, A. Sakulkalavek, R. Sakdanuphab, Graphene Addition Improved Figure of Merit in SnTe Prepared by the Rapid Hybrid Microwave Solid-State Method, J. Phys. Chem. Solids. 161 (2021) 110490-110490.
DOI: 10.1016/j.jpcs.2021.110490
Google Scholar
[28]
Y. Lu, Y. Ding, Y. Qiu, K. Cai, Q. Yao, H. Song, L. Tong, J. He, L. Chen, Good Performance and Flexible PEDOT: PSS/Cu2Se Nanowire Thermoelectric Composite Films, ACS appl. mater. interfaces. 11.13 (2019) 12819-12829.
DOI: 10.1021/acsami.9b01718
Google Scholar
[29]
Fitriani, S. Said, S. Rozali, M. Salleh, M. Sabri, D. Bui, T. Nakayama, O. Raihan, M. Hasnan, M. Bashir, F. Kamal, Enhancement of Thermoelectric Properties in Cold Pressed Nickel Doped Bismuth Sulfide Compounds, Electron. Mater. Lett. 14.6 (2018) 689-699.
DOI: 10.1007/s13391-018-0072-8
Google Scholar
[30]
D. Liu, Z. Yan, Y. Zhao, Z. Zhang, Y. Zhen, B. Zhang, P. Shi, C. Xue, Facile MWCNTs-SnSe/ PEDOT: PSS Ternary Composite Flexible Thermoelectric Films Optimized by Cold-Pressing, J. Mater. Res. Technol. 15 (2021) 4452-4460.
DOI: 10.1016/j.jmrt.2021.10.075
Google Scholar
[31]
J. Shi, H. Chen, S. Jia, W. Wang, Rapid and Low-Cost Fabrication of Thermoelectric Composite Using Low-Pressure Cold Pressing and Thermocuring Methods, ML. 212 (2017) 299-302.
DOI: 10.1016/j.matlet.2017.10.087
Google Scholar
[32]
F. Meng, Q. Meng, F. Guo, J. Alam, J. Ma, Bismuthene nanosheets prepared by an environmentally friendly method and their thermoelectric epoxy nanocomposites, Adv. Ind. Eng. Poly. Res. 7.2 (2024) 226-233.
DOI: 10.1016/j.aiepr.2023.06.003
Google Scholar