[1]
M. Kačániová, M. Terentjeva, J. Štefániková, J. Žiarovská, T. Savitskaya, D. Grinshpan, P.Ł. Kowalczewski, N. Vukovic, E. Tvrdá, Chemical composition and antimicrobial activity of selected essential oils against staphylococcus spp. Isolated from human semen, Antibiotics. 9 (2020) 1–21.
DOI: 10.3390/antibiotics9110765
Google Scholar
[2]
M.A. Villanueva, R.C. Torres, K. Husnu Can Bager, T. Dzek, M. Kurkcuoglu, The Composition of Manila Elemi Oil, 1993.
Google Scholar
[3]
N.G. Kavallieratos, M.C. Boukouvala, C.T. Ntalaka, A. Skourti, E.P. Nika, F. Maggi, E. Spinozzi, E. Mazzara, R. Petrelli, G. Lupidi, C. Giordani, G. Benelli, Efficacy of 12 commercial essential oils as wheat protectants against stored-product beetles, and their acetylcholinesterase inhibitory activity, Entomologia Generalis. 41 (2021) 385–414.
DOI: 10.1127/entomologia/2021/1255
Google Scholar
[4]
H. Servi, U. Demir, E.Y. Servi, B. Gundogdu, T.H. Barak, Antiproliferative and Antibacterial Activities of Four Commer-cial Essential Oil Samples from Boswellia carteri, B. serrata, and two chemotypes of Canarium luzonicum, Journal of Essential Oil-Bearing Plants. 26 (2023) 79–94.
DOI: 10.1080/0972060X.2023.2165167
Google Scholar
[5]
C. Cimino, O.M. Maurel, T. Musumeci, A. Bonaccorso, F. Drago, E.M.B. Souto, R. Pignatello, C. Carbone, Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems, Pharmaceutics. 13 (2021) 1–35.
DOI: 10.3390/pharmaceutics13030327
Google Scholar
[6]
Y. Zhu, C. Li, H. Cui, L. Lin, Encapsulation strategies to enhance the antibacterial properties of essential oils in food system, Food Control. 123 (2021).
DOI: 10.1016/j.foodcont.2020.107856
Google Scholar
[7]
S.K. Sundar, J.K. Parikh, Advances and trends in encapsulation of essential oils, Int J Pharm. 635 (2023).
DOI: 10.1016/j.ijpharm.2023.122668
Google Scholar
[8]
S. Hedayati, M. Tarahi, R. Azizi, V. Baeghbali, E. Ansarifar, M.H. Hashempur, Encapsulation of mint essential oil: Techniques and applications, Adv Colloid Interface Sci. 321 (2023).
DOI: 10.1016/j.cis.2023.103023
Google Scholar
[9]
J.B. Pires, F.N. dos Santos, I.H. de L. Costa, D.H. Kringel, E. da R. Zavareze, A.R.G. Dias, Essential oil encapsulation by electrospinning and electrospraying using food proteins: A review, Food Research International. 170 (2023).
DOI: 10.1016/j.foodres.2023.112970
Google Scholar
[10]
F. Yi, Y. Liu, C. Su, Z. Xue, Research progress on the encapsulation and sustained controlled-release of essential oils, J Food Process Preserv. 46 (2022).
DOI: 10.1111/jfpp.17241
Google Scholar
[11]
A.C. Paiva-Santos, L. Ferreira, D. Peixoto, F. Silva, M.J. Soares, M. Zeinali, H. Zafar, F. Mascarenhas-Melo, F. Raza, P.G. Mazzola, F. Veiga, Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds— Pharmaceutical applications, Colloids Surf B Biointerfaces. 218 (2022).
DOI: 10.1016/j.colsurfb.2022.112758
Google Scholar
[12]
E. Pinho, M. Grootveld, G. Soares, M. Henriques, Cyclodextrins as encapsulation agents for plant bioactive compounds, Carbohydr Polym. 101 (2014) 121–135.
DOI: 10.1016/j.carbpol.2013.08.078
Google Scholar
[13]
D.R. Perinelli, G.F. Palmieri, M. Cespi, G. Bonacucina, Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update, Molecules. 25 (2020).
DOI: 10.3390/MOLECULES25245878
Google Scholar
[14]
H.M.C. Marques, A review on cyclodextrin encapsulation of essential oils and volatiles, Flavour Fragr J. 25 (2010) 313–326.
DOI: 10.1002/ffj.2019
Google Scholar
[15]
M. Kfoury, L. Auezova, H. Greige-Gerges, S. Fourmentin, Encapsulation in cyclodextrins to widen the applications of essential oils, Environ Chem Lett. 17 (2019) 129–143.
DOI: 10.1007/s10311-018-0783-y
Google Scholar
[16]
C. Muñoz-Shugulí, C.P. Vidal, P. Cantero-López, J. Lopez-Polo, Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes, Trends Food Sci Technol. 108 (2021) 177–186.
DOI: 10.1016/j.tifs.2020.12.020
Google Scholar
[17]
C. dos Santos, P. Buera, F. Mazzobre, Novel trends in cyclodextrins encapsulation. Applications in food science, Curr Opin Food Sci. 16 (2017) 106–113.
DOI: 10.1016/j.cofs.2017.09.002
Google Scholar
[18]
Y. Zhou, M. Zhang, C. Wang, X. Ren, T. Guo, Z. Cao, J. Zhang, L. Sun, L. Wu, Solidification of volatile D-Limonene by cyclodextrin metal-organic framework for pulmonary delivery via dry powder inhalers: In vitro and in vivo evaluation, Int J Pharm. 606 (2021).
DOI: 10.1016/j.ijpharm.2021.120825
Google Scholar
[19]
W. Zheng, S. Zhang, J. Chen, Preparation and sustained-release study of Litsea cubeba essential oil inclusion complex with γ-cyclodextrin-metal–organic frameworks, Chemical and Biological Technologies in Agriculture. 10 (2023).
DOI: 10.1186/s40538-023-00477-6
Google Scholar
[20]
Y. Wang, Y.T. Du, W.Y. Xue, L. Wang, R. Li, Z.T. Jiang, S.H. Tang, J. Tan, Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs), Meat Sci. 195 (2023).
DOI: 10.1016/j.meatsci.2022.108998
Google Scholar
[21]
Z. Li, Y. Sun, X. Pan, T. Gao, T. He, C. Chen, B. Zhang, X. Fu, Q. Huang, Controlled Release of Thymol by Cyclodextrin Metal-Organic Frameworks for Preservation of Cherry Tomatoes, Foods. 11 (2022).
DOI: 10.3390/foods11233818
Google Scholar
[22]
Y. Si, H. Luo, P. Zhang, C. Zhang, J. Li, P. Jiang, W. Yuan, R. Cha, CD-MOFs: From preparation to drug delivery and therapeutic application, Carbohydr Polym. 323 (2024).
DOI: 10.1016/j.carbpol.2023.121424
Google Scholar
[23]
M. Shen, D. Liu, T. Ding, Cyclodextrin-metal-organic frameworks (CD-MOFs): main aspects and perspectives in food applications, Curr Opin Food Sci. 41 (2021) 8–15.
DOI: 10.1016/j.cofs.2021.02.008
Google Scholar
[24]
S. V. Dummert, H. Saini, M.Z. Hussain, K. Yadava, K. Jayaramulu, A. Casini, R.A. Fischer, Cyclodextrin metal-organic frameworks and derivatives: recent developments and applications, Chem Soc Rev. 51 (2022) 5175–5213.
DOI: 10.1039/d1cs00550b
Google Scholar
[25]
B. Tian, J. Liu, Cyclodextrin-metal-organic frameworks in molecular delivery, detection, separation, and capture: An updated critical review, Carbohydr Polym. 306 (2023).
DOI: 10.1016/j.carbpol.2023.120598
Google Scholar
[26]
T. Rajkumar, D. Kukkar, K.H. Kim, J.R. Sohn, A. Deep, Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications, Journal of Industrial and Engineering Chemistry. 72 (2019) 50–66.
DOI: 10.1016/j.jiec.2018.12.048
Google Scholar
[27]
BIOVIA. Materials Studio; Dassault Systèmes. https://www.3ds.com/products/biovia/materials-studio
Google Scholar