Inclusion of Elemi (Canarium luzonicum) Essential Oil in Cyclodextrin Metal-Organic Framework

Article Preview

Abstract:

Elemi essential oil, extracted from the resin of the elemi tree (Canarium luzonicum), is highly valued for its distinctive aromatic and medicinal properties. Its complex composition includes various monoterpenes and sesquiterpenes such as α-phellandrene, limonene, and elemicin, which collectively contribute to its unique fragrance and therapeutic benefits. However, the oil’s susceptibility to environmental factors such as heat, light, and oxidation often leads to degradation and reduced efficacy. In this study, we investigated the encapsulation of elemi essential oil components within cyclodextrin metal-organic frameworks (CD-MOFs) using molecular docking and molecular dynamics (MD) simulations to assess adsorption behavior and complex stability. Significant variation in binding affinities was observed, with cis-sabinene exhibiting the strongest adsorption driven by favorable hydrophobic interactions within the CD-MOF cavity, while β-phellandrene demonstrated weaker binding attributed to less optimal molecular fit. MD simulations further confirmed the stable encapsulation of hydrophobic compounds, including d-limonene, α-elemol, α-phellandrene, and elemicin within the CD-MOF structure. Despite conformational adjustments during simulation, these complexes maintained high structural integrity, as evidenced by consistently low root-mean-square deviation (RMSD) and radius of gyration values. These results underscore the critical role of non-covalent interactions, particularly van der Waals forces, and reveal the inherent structural flexibility and robustness of CD-MOFs in accommodating diverse hydrophobic guest molecules. This work demonstrates the strong potential of CD-MOFs as versatile and effective carriers for the encapsulation and stabilization of hydrophobic essential oil components, paving the way for their application in advanced delivery systems across pharmaceutical, cosmetic, and food industries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

55-70

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Kačániová, M. Terentjeva, J. Štefániková, J. Žiarovská, T. Savitskaya, D. Grinshpan, P.Ł. Kowalczewski, N. Vukovic, E. Tvrdá, Chemical composition and antimicrobial activity of selected essential oils against staphylococcus spp. Isolated from human semen, Antibiotics. 9 (2020) 1–21.

DOI: 10.3390/antibiotics9110765

Google Scholar

[2] M.A. Villanueva, R.C. Torres, K. Husnu Can Bager, T. Dzek, M. Kurkcuoglu, The Composition of Manila Elemi Oil, 1993.

Google Scholar

[3] N.G. Kavallieratos, M.C. Boukouvala, C.T. Ntalaka, A. Skourti, E.P. Nika, F. Maggi, E. Spinozzi, E. Mazzara, R. Petrelli, G. Lupidi, C. Giordani, G. Benelli, Efficacy of 12 commercial essential oils as wheat protectants against stored-product beetles, and their acetylcholinesterase inhibitory activity, Entomologia Generalis. 41 (2021) 385–414.

DOI: 10.1127/entomologia/2021/1255

Google Scholar

[4] H. Servi, U. Demir, E.Y. Servi, B. Gundogdu, T.H. Barak, Antiproliferative and Antibacterial Activities of Four Commer-cial Essential Oil Samples from Boswellia carteri, B. serrata, and two chemotypes of Canarium luzonicum, Journal of Essential Oil-Bearing Plants. 26 (2023) 79–94.

DOI: 10.1080/0972060X.2023.2165167

Google Scholar

[5] C. Cimino, O.M. Maurel, T. Musumeci, A. Bonaccorso, F. Drago, E.M.B. Souto, R. Pignatello, C. Carbone, Essential oils: Pharmaceutical applications and encapsulation strategies into lipid-based delivery systems, Pharmaceutics. 13 (2021) 1–35.

DOI: 10.3390/pharmaceutics13030327

Google Scholar

[6] Y. Zhu, C. Li, H. Cui, L. Lin, Encapsulation strategies to enhance the antibacterial properties of essential oils in food system, Food Control. 123 (2021).

DOI: 10.1016/j.foodcont.2020.107856

Google Scholar

[7] S.K. Sundar, J.K. Parikh, Advances and trends in encapsulation of essential oils, Int J Pharm. 635 (2023).

DOI: 10.1016/j.ijpharm.2023.122668

Google Scholar

[8] S. Hedayati, M. Tarahi, R. Azizi, V. Baeghbali, E. Ansarifar, M.H. Hashempur, Encapsulation of mint essential oil: Techniques and applications, Adv Colloid Interface Sci. 321 (2023).

DOI: 10.1016/j.cis.2023.103023

Google Scholar

[9] J.B. Pires, F.N. dos Santos, I.H. de L. Costa, D.H. Kringel, E. da R. Zavareze, A.R.G. Dias, Essential oil encapsulation by electrospinning and electrospraying using food proteins: A review, Food Research International. 170 (2023).

DOI: 10.1016/j.foodres.2023.112970

Google Scholar

[10] F. Yi, Y. Liu, C. Su, Z. Xue, Research progress on the encapsulation and sustained controlled-release of essential oils, J Food Process Preserv. 46 (2022).

DOI: 10.1111/jfpp.17241

Google Scholar

[11] A.C. Paiva-Santos, L. Ferreira, D. Peixoto, F. Silva, M.J. Soares, M. Zeinali, H. Zafar, F. Mascarenhas-Melo, F. Raza, P.G. Mazzola, F. Veiga, Cyclodextrins as an encapsulation molecular strategy for volatile organic compounds— Pharmaceutical applications, Colloids Surf B Biointerfaces. 218 (2022).

DOI: 10.1016/j.colsurfb.2022.112758

Google Scholar

[12] E. Pinho, M. Grootveld, G. Soares, M. Henriques, Cyclodextrins as encapsulation agents for plant bioactive compounds, Carbohydr Polym. 101 (2014) 121–135.

DOI: 10.1016/j.carbpol.2013.08.078

Google Scholar

[13] D.R. Perinelli, G.F. Palmieri, M. Cespi, G. Bonacucina, Encapsulation of Flavours and Fragrances into Polymeric Capsules and Cyclodextrins Inclusion Complexes: An Update, Molecules. 25 (2020).

DOI: 10.3390/MOLECULES25245878

Google Scholar

[14] H.M.C. Marques, A review on cyclodextrin encapsulation of essential oils and volatiles, Flavour Fragr J. 25 (2010) 313–326.

DOI: 10.1002/ffj.2019

Google Scholar

[15] M. Kfoury, L. Auezova, H. Greige-Gerges, S. Fourmentin, Encapsulation in cyclodextrins to widen the applications of essential oils, Environ Chem Lett. 17 (2019) 129–143.

DOI: 10.1007/s10311-018-0783-y

Google Scholar

[16] C. Muñoz-Shugulí, C.P. Vidal, P. Cantero-López, J. Lopez-Polo, Encapsulation of plant extract compounds using cyclodextrin inclusion complexes, liposomes, electrospinning and their combinations for food purposes, Trends Food Sci Technol. 108 (2021) 177–186.

DOI: 10.1016/j.tifs.2020.12.020

Google Scholar

[17] C. dos Santos, P. Buera, F. Mazzobre, Novel trends in cyclodextrins encapsulation. Applications in food science, Curr Opin Food Sci. 16 (2017) 106–113.

DOI: 10.1016/j.cofs.2017.09.002

Google Scholar

[18] Y. Zhou, M. Zhang, C. Wang, X. Ren, T. Guo, Z. Cao, J. Zhang, L. Sun, L. Wu, Solidification of volatile D-Limonene by cyclodextrin metal-organic framework for pulmonary delivery via dry powder inhalers: In vitro and in vivo evaluation, Int J Pharm. 606 (2021).

DOI: 10.1016/j.ijpharm.2021.120825

Google Scholar

[19] W. Zheng, S. Zhang, J. Chen, Preparation and sustained-release study of Litsea cubeba essential oil inclusion complex with γ-cyclodextrin-metal–organic frameworks, Chemical and Biological Technologies in Agriculture. 10 (2023).

DOI: 10.1186/s40538-023-00477-6

Google Scholar

[20] Y. Wang, Y.T. Du, W.Y. Xue, L. Wang, R. Li, Z.T. Jiang, S.H. Tang, J. Tan, Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs), Meat Sci. 195 (2023).

DOI: 10.1016/j.meatsci.2022.108998

Google Scholar

[21] Z. Li, Y. Sun, X. Pan, T. Gao, T. He, C. Chen, B. Zhang, X. Fu, Q. Huang, Controlled Release of Thymol by Cyclodextrin Metal-Organic Frameworks for Preservation of Cherry Tomatoes, Foods. 11 (2022).

DOI: 10.3390/foods11233818

Google Scholar

[22] Y. Si, H. Luo, P. Zhang, C. Zhang, J. Li, P. Jiang, W. Yuan, R. Cha, CD-MOFs: From preparation to drug delivery and therapeutic application, Carbohydr Polym. 323 (2024).

DOI: 10.1016/j.carbpol.2023.121424

Google Scholar

[23] M. Shen, D. Liu, T. Ding, Cyclodextrin-metal-organic frameworks (CD-MOFs): main aspects and perspectives in food applications, Curr Opin Food Sci. 41 (2021) 8–15.

DOI: 10.1016/j.cofs.2021.02.008

Google Scholar

[24] S. V. Dummert, H. Saini, M.Z. Hussain, K. Yadava, K. Jayaramulu, A. Casini, R.A. Fischer, Cyclodextrin metal-organic frameworks and derivatives: recent developments and applications, Chem Soc Rev. 51 (2022) 5175–5213.

DOI: 10.1039/d1cs00550b

Google Scholar

[25] B. Tian, J. Liu, Cyclodextrin-metal-organic frameworks in molecular delivery, detection, separation, and capture: An updated critical review, Carbohydr Polym. 306 (2023).

DOI: 10.1016/j.carbpol.2023.120598

Google Scholar

[26] T. Rajkumar, D. Kukkar, K.H. Kim, J.R. Sohn, A. Deep, Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications, Journal of Industrial and Engineering Chemistry. 72 (2019) 50–66.

DOI: 10.1016/j.jiec.2018.12.048

Google Scholar

[27] BIOVIA. Materials Studio; Dassault Systèmes. https://www.3ds.com/products/biovia/materials-studio

Google Scholar