Catalytic Degradation of the Organic Dyes in the Presence of the Multiphase Titanium Dioxide and Hematite and Gold Nanocomposites

Article Preview

Abstract:

Chemical synthesis of nanocomposite particles based on titanium dioxide modified with iron and gold was carried out. It was shown that, depending on the mass content of the doping species, the phase transformation of titanium hydroxide at T = 700 °C proceeds with the formation of either anatase (2 wt.%) or anatase and rutile (8 wt.%). The doping species form a hematite phase and gold clusters on the metal-oxide surface. A weakly crystalline anatase obtained by the transformation of metatitanic acid (MTA), with a particle size of 8 nm and a sulfur content of 0.036%, was selected as the co-catalyst. The anatase co-catalyst exhibits photocatalytic activity in the destruction of organic dyes. Its introduction into the TiO2&Fe2O3&Au nanocomposite suspension promotes the catalytic degradation of cationic and anionic dyes at temperatures ranging from 35 to 60 °C. It was observed that the degradation degree of the solutions after 150 min of catalytic process is the following: Methyl Orange (MO) – 72 %, Methylene Blue (MB) – 71.5 %, Rhodamine B (RhB) – 63.5 %, and Orange G (OG) – 47 %. The reaction rate constant depends on the composition of the dye, varying from 6.5·10-4 min-1 for OG to 2.56·10-3 min-1 for MB. The prospect of creating heterostructures based on TiO2 modified with hematite and gold, and their further adaptation for photocatalytic hydrogen production, is considered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-40

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Horikoshi, N. Serpone, Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects, Catalysis Today 340 (2020) 334–346

DOI: 10.1016/j.cattod.2018.10.020

Google Scholar

[2] P. Ribao, M. J. Rivero, I. Ortiz, TiO2 structures doped with noble metals and / or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid, Environ Sci Pollut Res (2016)

DOI: 10.1007/s11356-016-7714-x

Google Scholar

[3] L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity, J. Electrochem. Soc. 164 (2017) H651–H656.

DOI: 10.1149/2.1531709jes

Google Scholar

[4] G. ˇZerjav, K. ˇZiˇzek, J. Zavaˇsnik, A. Pintar, Brookite vs. rutile vs. anatase: What`s behind their various photocatalytic activities? Journal of Environmental Chemical Engineering 10 (2022) 107722

DOI: 10.1016/j.jece.2022.107722

Google Scholar

[5] V.V. Shymanovska, T.A. Khalyavka, E.V. Manuilov, T.A. Gavrilko, A. Aho, V. V. Naumov, N.D. Shcherban, Effect of surface doping of TiO2 powders with Fe ions on the structural, optical and photocatalytic properties of anatase and rutile, Journal of Physics and Chemistry of Solids. 160 (2022) 110308

DOI: 10.1016/j.jpcs.2021.110308

Google Scholar

[6] S. Girish Kumar, Devi L. Gomathi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. 115 (2011) 13211–13241, https://doi. org/.

DOI: 10.1021/jp204364a

Google Scholar

[7] Y. Yalcın, M. Kılıc, Z. Cınar, Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity, Applied Catalysis B: Environmental. 99 (2010) 469-477

DOI: 10.1016/j.apcatb.2010.05.013

Google Scholar

[8] S.B. Eadi, S. Kim, S.W. Jeong, H.W. Jeon, Novel preparation of Fe doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation, Ann. Mater. Sci. Eng. (2017) 2191659, https://doi.org/10.1155/2017/2191659, (2017)

DOI: 10.1155/2017/2191659

Google Scholar

[9] A.J. Jafari, M. Moslemzadeh, Synthesis of Fe-doped TiO2 for photocatalytic processes under UV-Visible light: effect of preparation methods on crystal size—a systematic review study, Comments Mod. Chem. 40 (2020) 327–346, https://doi. org/.

DOI: 10.1080/02603594.2020.1821674

Google Scholar

[10] X. Dai, G. Lu, Y. Hu, X. Xie, X Wang, J Sun, Reversible redox behavior of Fe2O3/TiO2 composites in the gaseous photodegradation process, Ceramics International 45 (2019) 13187–13192

DOI: 10.1016/j.ceramint.2019.03.255

Google Scholar

[11] A. Banisharif, A. A.Khodadadi, Y. Mortazavi, A. A. Firooz, J. Beheshtian, S. Agah, S. Menbari, Highly active Fe2O3-doped TiO2 photocatalyst for degradation oftrichloroethylene in air under UV and visible light irradiation: Experimental and computational studies, Applied Catalysis B: Environmental. 165 (2015) 209-221

DOI: 10.1016/j.apcatb.2014.10.023

Google Scholar

[12] M. Nolan, A. Iwaszuk, and H. Tada, Molecular Metal Oxide Cluster-Surface Modified Titanium(IV) Dioxide Photocatalysts, Aust. J. Chem., 65 (2012) 624-632

DOI: 10.1071/CH11451

Google Scholar

[13] J P Ramadhani, S Wahyuningsih, A H Ramelan,Improving method of TiO2-Fe2O3 composite materials for selfcleaning glass preparation, IOP Conf. Series: Materials Science and Engineering 578 (2019) 012029 IOP Publishing

DOI: 10.1088/1757-899X/578/1/012029

Google Scholar

[14] R. M. Iqbal, D. A. P. Wardani, L. Hakim, A. Damsyik, R. Safitri, H. Fansuri, The Structural and Optical Band Gap Energy Evaluation of TiO2-Fe2O3 Composite, The 2nd International Conference on Chemistry and Material Science (IC2MS) IOP Conf. Series: Materials Science and Engineering 833 (2020) 012072 IOP Publishing

DOI: 10.1088/1757-899X/833/1/012072

Google Scholar

[15] A. Aguinaco, J.M. Mánuel, E. Blanco, M. Domínguez, R. Litrán, J.J. Delgado, M. Ramírez-del-Solar, Fe3O4-TiO2 Thin Films in Solar Photocatalytic Processes. Materials, 15 (2022) 6718

DOI: 10.3390/ma15196718

Google Scholar

[16] N. K. Pal, C. Kryschi Improved photocatalytic activity of gold decorated differently doped TiO2 nanoparticles: A comparative study, Chemosphere 144 (2016) 1655e1664

DOI: 10.1016/j.chemosphere.2015.10.060

Google Scholar

[17] S. A. Balsamo, S. Sciré , M. Condorelli and R. Fiorenza, Photocatalytic H2 Production on Au/TiO2: Effect of Au Photodeposition on Different TiO2 Crystalline Phases, Multidisciplinary Scientific Journal, 5 (2022) 92–104

DOI: 10.3390/j5010006

Google Scholar

[18] M. M. Khan, J. Lee, M. H. Cho, Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect, Journal of Industrial and Engineering Chemistry 20 (2014) 1584–1590

DOI: 10.1016/j.jiec.2013.08.002

Google Scholar

[19] C.C. Liu, M.S. Liang, C.C. Khaw, Effect of gold nanoparticles on the performances of TiO2 dye-sensitised solar cell, Ceramics International, 44(6) (2018) 5926-5931.

DOI: 10.1016/j.ceramint.2017.12.158

Google Scholar

[20] V. Iliev, D.Tomova, L. Bilyarska, G. Tyuliev, Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J. Mol. Catal. A Chem. 263 (2007), 32–38.

DOI: 10.1016/j.molcata.2006.08.019

Google Scholar

[21] H. Zhou, L. Zheng, H. Jia, Easy control of self-assembly of gold nanoparticles by changing the structure of the capping agent, Colloids Surf. A Physicochem. Eng. Asp. 450 (2014) 9–14.

DOI: 10.1016/j.colsurfa.2014.03.013

Google Scholar

[22] A. Mezni, M. M. Ibrahim, N. B. Saber, M. Alsawat, T. Kumeria, T. Altalkhi, Ternay Au@TiO2/α‑Fe2O3 Nanocomposite with Nanoring Structure: Synthesis, Characterization and Photocatalytic Activity, J Inorg Organomet Polym 31 (2021) 4372–4379

DOI: 10.1007/s10904-021-02033-x

Google Scholar

[23] O.M. Lavrynenko, M.M. Zahornyi, E.N. Paineau, O.Yu. Pavlenko, Synthesis of active binary and ternary TiO2-based nanocomposites for efficient dye photodegradation, Applied Nanoscience 13 (2023) 7365-7377. https://doi.org/10.1007/s13204-023-02909-z ].

DOI: 10.1007/s13204-023-02909-z

Google Scholar

[24] O.M. Lavrynenko, M.M. Zahornyi, E. Paineau, O.Yu. Pavlenko, N.I. Tyschenko, O.I. Bykov, Characteristic of TiO2&Ag0 nanocomposites formed via transformation of metatitanic acid and titanium (IV) isopropoxide, Materials Today: Proceedings, 2022

DOI: 10.1016/j.matpr.2022.03.002

Google Scholar

[25] O.M. Lavrynenko, O.Y. Pavlenko, M.M. Zahornyi, S.F. Korichev, Characteristics of Nanostructures Formed during the Heat Treatment of Titanium (IV) Isopropoxide Precipitates in the Presence of Noble Metals.), 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), 2022, pp. NSS19-1-NSS19-6.

DOI: 10.1109/NAP55339.2022.9934132

Google Scholar