[1]
S. Horikoshi, N. Serpone, Can the photocatalyst TiO2 be incorporated into a wastewater treatment method? Background and prospects, Catalysis Today 340 (2020) 334–346
DOI: 10.1016/j.cattod.2018.10.020
Google Scholar
[2]
P. Ribao, M. J. Rivero, I. Ortiz, TiO2 structures doped with noble metals and / or graphene oxide to improve the photocatalytic degradation of dichloroacetic acid, Environ Sci Pollut Res (2016)
DOI: 10.1007/s11356-016-7714-x
Google Scholar
[3]
L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. Xie, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity, J. Electrochem. Soc. 164 (2017) H651–H656.
DOI: 10.1149/2.1531709jes
Google Scholar
[4]
G. ˇZerjav, K. ˇZiˇzek, J. Zavaˇsnik, A. Pintar, Brookite vs. rutile vs. anatase: What`s behind their various photocatalytic activities? Journal of Environmental Chemical Engineering 10 (2022) 107722
DOI: 10.1016/j.jece.2022.107722
Google Scholar
[5]
V.V. Shymanovska, T.A. Khalyavka, E.V. Manuilov, T.A. Gavrilko, A. Aho, V. V. Naumov, N.D. Shcherban, Effect of surface doping of TiO2 powders with Fe ions on the structural, optical and photocatalytic properties of anatase and rutile, Journal of Physics and Chemistry of Solids. 160 (2022) 110308
DOI: 10.1016/j.jpcs.2021.110308
Google Scholar
[6]
S. Girish Kumar, Devi L. Gomathi, Review on modified TiO2 photocatalysis under UV/Visible light: selected results and related mechanisms on interfacial charge carrier transfer dynamics, J. Phys. Chem. 115 (2011) 13211–13241, https://doi. org/.
DOI: 10.1021/jp204364a
Google Scholar
[7]
Y. Yalcın, M. Kılıc, Z. Cınar, Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity, Applied Catalysis B: Environmental. 99 (2010) 469-477
DOI: 10.1016/j.apcatb.2010.05.013
Google Scholar
[8]
S.B. Eadi, S. Kim, S.W. Jeong, H.W. Jeon, Novel preparation of Fe doped TiO2 nanoparticles and their application for gas sensor and photocatalytic degradation, Ann. Mater. Sci. Eng. (2017) 2191659, https://doi.org/10.1155/2017/2191659, (2017)
DOI: 10.1155/2017/2191659
Google Scholar
[9]
A.J. Jafari, M. Moslemzadeh, Synthesis of Fe-doped TiO2 for photocatalytic processes under UV-Visible light: effect of preparation methods on crystal size—a systematic review study, Comments Mod. Chem. 40 (2020) 327–346, https://doi. org/.
DOI: 10.1080/02603594.2020.1821674
Google Scholar
[10]
X. Dai, G. Lu, Y. Hu, X. Xie, X Wang, J Sun, Reversible redox behavior of Fe2O3/TiO2 composites in the gaseous photodegradation process, Ceramics International 45 (2019) 13187–13192
DOI: 10.1016/j.ceramint.2019.03.255
Google Scholar
[11]
A. Banisharif, A. A.Khodadadi, Y. Mortazavi, A. A. Firooz, J. Beheshtian, S. Agah, S. Menbari, Highly active Fe2O3-doped TiO2 photocatalyst for degradation oftrichloroethylene in air under UV and visible light irradiation: Experimental and computational studies, Applied Catalysis B: Environmental. 165 (2015) 209-221
DOI: 10.1016/j.apcatb.2014.10.023
Google Scholar
[12]
M. Nolan, A. Iwaszuk, and H. Tada, Molecular Metal Oxide Cluster-Surface Modified Titanium(IV) Dioxide Photocatalysts, Aust. J. Chem., 65 (2012) 624-632
DOI: 10.1071/CH11451
Google Scholar
[13]
J P Ramadhani, S Wahyuningsih, A H Ramelan,Improving method of TiO2-Fe2O3 composite materials for selfcleaning glass preparation, IOP Conf. Series: Materials Science and Engineering 578 (2019) 012029 IOP Publishing
DOI: 10.1088/1757-899X/578/1/012029
Google Scholar
[14]
R. M. Iqbal, D. A. P. Wardani, L. Hakim, A. Damsyik, R. Safitri, H. Fansuri, The Structural and Optical Band Gap Energy Evaluation of TiO2-Fe2O3 Composite, The 2nd International Conference on Chemistry and Material Science (IC2MS) IOP Conf. Series: Materials Science and Engineering 833 (2020) 012072 IOP Publishing
DOI: 10.1088/1757-899X/833/1/012072
Google Scholar
[15]
A. Aguinaco, J.M. Mánuel, E. Blanco, M. Domínguez, R. Litrán, J.J. Delgado, M. Ramírez-del-Solar, Fe3O4-TiO2 Thin Films in Solar Photocatalytic Processes. Materials, 15 (2022) 6718
DOI: 10.3390/ma15196718
Google Scholar
[16]
N. K. Pal, C. Kryschi Improved photocatalytic activity of gold decorated differently doped TiO2 nanoparticles: A comparative study, Chemosphere 144 (2016) 1655e1664
DOI: 10.1016/j.chemosphere.2015.10.060
Google Scholar
[17]
S. A. Balsamo, S. Sciré , M. Condorelli and R. Fiorenza, Photocatalytic H2 Production on Au/TiO2: Effect of Au Photodeposition on Different TiO2 Crystalline Phases, Multidisciplinary Scientific Journal, 5 (2022) 92–104
DOI: 10.3390/j5010006
Google Scholar
[18]
M. M. Khan, J. Lee, M. H. Cho, Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect, Journal of Industrial and Engineering Chemistry 20 (2014) 1584–1590
DOI: 10.1016/j.jiec.2013.08.002
Google Scholar
[19]
C.C. Liu, M.S. Liang, C.C. Khaw, Effect of gold nanoparticles on the performances of TiO2 dye-sensitised solar cell, Ceramics International, 44(6) (2018) 5926-5931.
DOI: 10.1016/j.ceramint.2017.12.158
Google Scholar
[20]
V. Iliev, D.Tomova, L. Bilyarska, G. Tyuliev, Influence of the size of gold nanoparticles deposited on TiO2 upon the photocatalytic destruction of oxalic acid. J. Mol. Catal. A Chem. 263 (2007), 32–38.
DOI: 10.1016/j.molcata.2006.08.019
Google Scholar
[21]
H. Zhou, L. Zheng, H. Jia, Easy control of self-assembly of gold nanoparticles by changing the structure of the capping agent, Colloids Surf. A Physicochem. Eng. Asp. 450 (2014) 9–14.
DOI: 10.1016/j.colsurfa.2014.03.013
Google Scholar
[22]
A. Mezni, M. M. Ibrahim, N. B. Saber, M. Alsawat, T. Kumeria, T. Altalkhi, Ternay Au@TiO2/α‑Fe2O3 Nanocomposite with Nanoring Structure: Synthesis, Characterization and Photocatalytic Activity, J Inorg Organomet Polym 31 (2021) 4372–4379
DOI: 10.1007/s10904-021-02033-x
Google Scholar
[23]
O.M. Lavrynenko, M.M. Zahornyi, E.N. Paineau, O.Yu. Pavlenko, Synthesis of active binary and ternary TiO2-based nanocomposites for efficient dye photodegradation, Applied Nanoscience 13 (2023) 7365-7377. https://doi.org/10.1007/s13204-023-02909-z ].
DOI: 10.1007/s13204-023-02909-z
Google Scholar
[24]
O.M. Lavrynenko, M.M. Zahornyi, E. Paineau, O.Yu. Pavlenko, N.I. Tyschenko, O.I. Bykov, Characteristic of TiO2&Ag0 nanocomposites formed via transformation of metatitanic acid and titanium (IV) isopropoxide, Materials Today: Proceedings, 2022
DOI: 10.1016/j.matpr.2022.03.002
Google Scholar
[25]
O.M. Lavrynenko, O.Y. Pavlenko, M.M. Zahornyi, S.F. Korichev, Characteristics of Nanostructures Formed during the Heat Treatment of Titanium (IV) Isopropoxide Precipitates in the Presence of Noble Metals.), 2022 IEEE 12th International Conference Nanomaterials: Applications & Properties (NAP), 2022, pp. NSS19-1-NSS19-6.
DOI: 10.1109/NAP55339.2022.9934132
Google Scholar