[1]
Williams, J.C., & Starke Jr,E.A. (2003). Progress in structural materials for aerospace systems. Acta Materialia, 51(19), 5775-5799. https://doi.org/10.1016/j.actamat.2003.08.023.
DOI: 10.1016/j.actamat.2003.08.023
Google Scholar
[2]
Sha, G., & Cerezo, A. (2004). Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Materialia, 52(15), 4503-4516. https://doi.org/10.1016/j.actamat.2004.06.025.
DOI: 10.1016/j.actamat.2004.06.025
Google Scholar
[3]
Robson, J. D. (2004). Microstructural evolution in aluminium alloy 7050 during processing. Materials Science and Engineering: A, 382(1-2),112-121. https://doi.org/10.1016/j.msea.2004.05.006.
DOI: 10.1016/j.msea.2004.05.006
Google Scholar
[4]
Kumar, A., & Rai, R.N. (2018, June). Fabrication, Microstructure and Mechanical Properties of Boron Carbide (B4Cp) Reinforced Aluminum Metal Matrix Composite-A Review. IOP Conference Series: Materials Science and Engineering, 377(1), 012092). IOP Publishing. https://doi.org/10.1088/1757-899X/377/1/012092.
DOI: 10.1088/1757-899x/377/1/012092
Google Scholar
[5]
Kumar, A., & Rai, R.N. (2019). Evaluation of Tribological Properties of Stir Cast AA7050/B4C-T6 Composite. JSIR, 78(5), 312-316.
Google Scholar
[6]
Kumar, A., Hussain, S.A.I., & Rai, R.N. (2019). Optimization by AHP-ARAS of EDM Process Parameters on Machining AA7050-10% B 4 C Composite. Advances in Industrial and Production Engineering, 285-296. Springer, Singapore. https://doi.org/10.1007/978-981-13-6412-9_26.
DOI: 10.1007/978-981-13-6412-9_26
Google Scholar
[7]
Li, J.G., & Wang, S.Q. (2017). Distortion caused by residual stresses in machining aeronautical aluminum alloy parts: recent advances. The International Journal of Advanced Manufacturing Technology, 89(1-4), 997-1012. https://doi.org/10.1007/s00170-016-9066-6.
DOI: 10.1007/s00170-016-9066-6
Google Scholar
[8]
Dursun, T., & Soutis, C. (2014). Recent developments in advanced aircraft aluminium alloys. Materials & Design, (56), 862-871. https://doi.org/10.1016/j.matdes.2013.12.002.
DOI: 10.1016/j.matdes.2013.12.002
Google Scholar
[9]
Kumar, S. S., Uthayakumar, M., Kumaran, S. T., & Parameswaran, P. (2014). Electrical discharge machining of Al (6351)–SiC–B4C hybrid composite. Materials and Manufacturing Processes, 29(11-12), 1395-1400. https://doi.org/10.1080/10426914.2014.952024.
DOI: 10.1080/10426914.2014.952024
Google Scholar
[10]
Dang, XP (2018) Constrained multi-objective optimisation of EDM process parameters using a kriging model and particle swarm algorithm. Materials and Manufacturing Processes. 33(4), 397-404. https://doi.org/10.1080/10426914.2017.1292037.
DOI: 10.1080/10426914.2017.1292037
Google Scholar
[11]
Guo, Y., Wang, L., Zhang, G., & Hou, P. (2017). Multi-response optimization of the electrical discharge machining of insulating zirconia. Materials and Manufacturing Processes, 32(3), 294-301. https://doi.org/10.1080/10426914.2016.1176180.
DOI: 10.1080/10426914.2016.1176180
Google Scholar
[12]
Tripathy, S., & Tripathy, D. K. (2017). Multi-response optimization of machining process parameters for powder mixed electro-discharge machining of H-11 die steel using grey relational analysis and topsis. Machining Science and Technology, 21(3), 362-384. https://doi.org/10.1080/10910344.2017.1283957.
DOI: 10.1080/10910344.2017.1283957
Google Scholar
[13]
Chow, H.M., Yan, B.H., Huang, F.Y., & Hung, J.C. (2000). Study of added powder in kerosene for the micro-slit machining of titanium alloy using electro-discharge machining. Journal of Materials Processing Technology, 101(1-3), 95-103. https://doi.org/10.1016/S0924-0136(99)00458-6.
DOI: 10.1016/s0924-0136(99)00458-6
Google Scholar
[14]
Satpathy, A., Tripathy, S., Senapati, N. P., & Brahma, M. K. (2017). Optimization of EDM process parameters for AlSiC-20% SiC reinforced metal matrix composite with multi response using TOPSIS. Materials Today: Proceedings, 4(2), 3043-3052. https://doi.org/10.1016/j.matpr.2017.02.187.
DOI: 10.1016/j.matpr.2017.02.187
Google Scholar
[15]
Majumder, A, Das, A, Das, P.K (2018) A standard deviation based firefly algorithm for multi-objective optimisation of WEDM process during machining of Indian RAFM steel. Neural Computing and Applications, 29(3), 665-677. https://doi.org/10.1007/s00521-016-2471-9.
DOI: 10.1007/s00521-016-2471-9
Google Scholar
[16]
Sidhu, S. S., & Yazdani, M. (2018). Comparative analysis of MCDM techniques for EDM of SiC/A359 composite. Arabian Journal for Science and Engineering, 43(3), 1093-1102. https://doi.org/10.1007/s13369-017-2726-5.
DOI: 10.1007/s13369-017-2726-5
Google Scholar
[17]
Assarzadeh, S., & Ghoreishi, M. (2008). Neural-network-based modeling and optimization of the electro-discharge machining process. The International Journal of Advanced Manufacturing Technology, 39(5-6), 488-500. https://doi.org/10.1007/s00170-007-1235-1.
DOI: 10.1007/s00170-007-1235-1
Google Scholar
[18]
Shukla, R., & Singh, D. (2017). Selection of parameters for advanced machining processes using firefly algorithm. Engineering Science and Technology, an International Journal, 20(1), 212-221. https://doi.org/10.1016/j.jestch.2016.06.001.
DOI: 10.1016/j.jestch.2016.06.001
Google Scholar
[19]
Maity, K., & Mishra, H. (2018). ANN modelling and Elitist teaching learning approach for multi-objective optimization of $$\upmu $$-EDM. Journal of Intelligent Manufacturing, 29(7), 1599-1616. https://doi.org/10.1007/s10845-016-1193-2.
DOI: 10.1007/s10845-016-1193-2
Google Scholar
[20]
Peças, P., & Henriques, E. (2008). Effect of the powder concentration and dielectric flow in the surface morphology in electrical discharge machining with powder-mixed dielectric (PMD-EDM). The International Journal of Advanced Manufacturing Technology, 37(11-12), 1120-1132. https://doi.org/10.1007/s00170-007-1061-5.
DOI: 10.1007/s00170-007-1061-5
Google Scholar
[21]
Mandal, D., Pal, S. K., & Saha, P. (2007). Modeling of electrical discharge machining process using back propagation neural network and multi-objective optimization using non-dominating sorting genetic algorithm-II. Journal of materials processing technology, 186(1-3), 154-162. https://doi.org/10.1016/j.jmatprotec.2006.12.030.
DOI: 10.1016/j.jmatprotec.2006.12.030
Google Scholar
[22]
Somashekhar, K.P., Ramachandran, N., & Mathew, J. (2010). Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Materials and Manufacturing Processes, 25(6), 467-475. https://doi.org/10.1080/10426910903365760.
DOI: 10.1080/10426910903365760
Google Scholar
[23]
Rangajanardhaa, G., & Rao, S. (2009). Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. Journal of materials processing technology, 209(3), 1512-1520. https://doi.org/10.1016/j.jmatprotec.2008.04.003.
DOI: 10.1016/j.jmatprotec.2008.04.003
Google Scholar
[24]
Kumar, A., & Rai, R.N. (2019). Optimisation of EDM process parameters for AA7050-10 (WT)% B 4 C composite through ARAS, grey and Taguchi technique. International Journal of Materials and Product Technology, 59(2), 102-120. https://doi.org/10.1504/IJMPT.2019.102621.
DOI: 10.1504/ijmpt.2019.10024290
Google Scholar
[25]
Kumar, A., & Rai, R. N. (2019). Evaluation of Wear Properties of Stir Cast AA7050-10% B4C Ex Situ Composite through Fuzzy-TOPSIS MCDM Method. Solid State Phenomena, 291, 1-12. https://doi.org/10.4028/www.scientific.net/SSP.291.1.
DOI: 10.4028/www.scientific.net/ssp.291.1
Google Scholar
[26]
Kalaiselvan, K., Murugan, N., & Parameswaran, S. (2011). Production and characterization of AA6061–B4C stir cast composite. Materials & Design, 32(7), 4004-4009. https://doi.org/10.1016/j.matdes.2011.03.018.
DOI: 10.1016/j.matdes.2011.03.018
Google Scholar
[27]
Gopalakannan, S., & Senthilvelan, T. (2013). A parametric study of electrical discharge machining process parameters on machining of cast Al/B4C metal matrix nanocomposites. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 227(7), 993-1004. https://doi.org/10.1177/0954405413479505.
DOI: 10.1177/0954405413479505
Google Scholar
[28]
Singh, A.K., Dey, V., & Rai, R.N. (2017). Study on the effect of high-temperature ceramic fiber insulating board to weld grade P-91 steel. Journal of Manufacturing Processes, 25, 1-7. https://doi.org/10.1016/j.jmapro.2016.09.006.
DOI: 10.1016/j.jmapro.2016.09.006
Google Scholar
[29]
Malanchuk, Z.R. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. Article in press.
DOI: 10.29202/nvngu/2019-6/2
Google Scholar
[30]
Malanchuk, Ye., Korniienko, V., Moshynskyi, V., Soroka, V., Khrystyuk, A., & Malanchuk, Z. (2019). Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits, 13(1), 49-57. https://doi.org/10.33271/mining13.01.049.
DOI: 10.33271/mining13.01.049
Google Scholar