A New Perspective on the Mathematical Modeling of Highly Nonlinear Anisotropic Plastic Flows in a Heterogeneous Solid

Article Preview

Abstract:

A new mathematical formulation is presented for describing the three-dimensional anisotropic plastic flow behavior of a heterogeneous polycrystalline solid. By using three principal stresses, three loading orientation angles, and a generally non-quadratic, real-valued stress exponent, a mathematical theory of anisotropic plasticity is formulated as two coupled orthogonal series expansions in both the 3D principal stress space (the p–plane) and the 3D loading orientation space. A geometrical interpretation of the new mathematical representation of anisotropic plasticity is offered. Specific examples are given to illustrate the application of the proposed theory for modeling the plastic anisotropy of orthotropic polycrystalline sheets under uniaxial and biaxial tension.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 105)

Pages:

271-276

Citation:

Online since:

July 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hill: Proc. Royal Soc. London A193 (1948), p.281.

Google Scholar

[2] M. Gotoh: Int. J. Mech. Sci. Vol. 19 (1977), p.505.

Google Scholar

[3] M. Arminjon, B. Bacroix, D. Imbault, J.K. Raphanel: Acta Mechanica Vol. 107(1994), p.33. 276.

DOI: 10.1007/bf01201818

Google Scholar

[4] P. Van Houtte, A. Van Bael, J. Winters: Textures and Microstructures Vol. 11(1995), p.23.

Google Scholar

[5] Y. Zhou, J.J. Jonas, L. Szabo, A. Makinde, M. Jain, S.R. MacEwen: Int. J. Plasticity Vol. 13(1997), p.165.

Google Scholar

[6] A.P. Karafillis and M.C. Boyce: J. Mech. Phys. Solids Vol. 41(1993), p.1859.

Google Scholar

[7] F. Barlart, J.C. Brem, J.W. Yoon, K. Chung, R.E. Dick, F. Pourboghrat, S.H. Choi, E. Chu, D.J. Lege: Int. J. Plasticity Vol. 19 (2003), p.1297.

DOI: 10.1016/s0749-6419(02)00019-0

Google Scholar

[8] R. Hill: Mathematical Proc. Cambridge Philosophical Soc. Vol. 85 (1979), p.179.

Google Scholar

[9] W.F. Hosford: Int. J. Mech. Sci. Vol. 27 (1985), p.423.

Google Scholar

[10] R. Hill: J. Mech. Phys. Solids Vol. 38 (1990), p.405.

Google Scholar

[11] J.R. Rice: J. Mech. Phys. Solids Vol. 19(1971), p.433.

Google Scholar

[12] Y.F. Dafalias: J. Mech. Phys. Solids Vol. 48(2000), p.2231.

Google Scholar

[13] H. -J. Bunge: Texture Analysis in Materials Science-Mathematical Methods (Butterworths, London, 1982).

Google Scholar

[14] A.J. Schwartz, M. Kumar, B.L. Adams: Electron Backscatter Diffraction in Materials Science (Kluwer Academic/Plenum Publishers, New York, 2000).

DOI: 10.1180/s0026461x00033132

Google Scholar

[15] G.S. Chirikjian, A.B. Kyatkin: Engineering Applications of Noncommutative Harmonic Analysis with Emphasis on Rotation and Motion Groups. (CRC Press, Boca Raton, 2002).

DOI: 10.1201/9781420041767

Google Scholar

[16] W. Tong, H. Tao, and X. Jiang: ASME Trans. J. Appl. Mech. Vol. 71(2004), p.521.

Google Scholar

[17] W. Tong, N. Zhang, and C. Xie: Aluminum 2003 (ed. by S.K. Das, The Minerals, Metals, & Materials Society, 2003), p.193.

Google Scholar

[18] C. Xie, Ph.D. Thesis, Yale University (2004).

Google Scholar