Luminescence of ZrO2 Nanocrystals

Article Preview

Abstract:

The luminescence of nanocrystalline tetragonal and cubic ZrO2 has been investigated. The tetragonal undoped ZrO2 revealed two luminescence bands, at ~2.0 eV and 2.7 eV , but only one band at ~2.7 eV was observed from cubic ZrO2. This luminescence was shown to be intrinsic. The regular zirconium-oxygen complex excited state is suggested as being responsible for intrinsic luminescence.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 106)

Pages:

103-108

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.B. Jackson, J.G. Ekerdt: J. Catal. Vol. 101 (1986), p.90.

Google Scholar

[2] E. Ivers-Tiffec, K.H. Hardte, W. Menesklon, J. Riegel: Electrochemica Acta Vol. 47 (2001), p.807.

Google Scholar

[3] M. Komachiya, S. Suzuki,T. Fujita, M. Tsuruki, S. Ohuchi, bT. Nakazawa: Sens. Actuators B Vol. 73 (2001), p.40.

Google Scholar

[4] A. Opalinsla, D. Hreniak,W. Lojkowski, W. Strek, A. Presz, E. Grzanka: Structure, morphology and luminescence properties of Pr-doped nanocrystalline ZrO2 obtained by hydrothermal method (Scitec Publications Ltd, Switzerland 2003. Ed. By W. Lojkowski and John Blizzard, p.141.

DOI: 10.4028/www.scientific.net/ssp.94.141

Google Scholar

[5] D. Millers, L. Grigorjeva, A. Opalinska, W. Lojkowski: Luminescence of Nanosized ZrO2 and ZrO2: Pr powders (Scitec Publications Ltd, Switzerland 2003. Ed. By W. Lojkowski and John Blizzard, p.135).

DOI: 10.1016/j.jlumin.2011.05.018

Google Scholar

[6] Q. Zhao, X. Wang, T. Cai: Appl. Surf. Sc. Vol. 225 (2004), p.7.

Google Scholar

[7] M. Anpo, T. Nomura: Res. Chem. Intermed. Vol. 13 (1990), p.195.

Google Scholar

[8] F. Bondioli, A.M. Ferrari, S. Braccini, C. Leonelli, G. CPellacani, A. Opalinska, T. Chudoba, E. Grzanka, B. Palosz, W. Lojkowski: Microwave Hydrothermal Synthezis of Nanocrystalline Prdoped Zirconia Powders at pressure up to 8 MPa (Scitec Publications Ltd, Switzerland 2003. Ed. By W. Lojkowski and John Blizzard, p.191.

DOI: 10.4028/www.scientific.net/ssp.94.193

Google Scholar

[9] R. R Piticescu, R.M. Piticescu, D. Taloi: Modelling Hydrothermal Synthesis of Ceramic Composite Nanopowders (Scitec Publications Ltd, Switzerland 2003. Ed. By W. Lojkowski and John Blizzard).

DOI: 10.4028/www.scientific.net/ssp.94.165

Google Scholar

[10] L. Grigorjeva, V. Pankratov, D.K. Millers, G. Corradi and K. Polgar: Integrated Ferroelectrics Vol. 35 (2001), p.137.

DOI: 10.1080/10584580108016895

Google Scholar

[11] A. Konrad, U. Herr, R. Tidecks, F. Kummer, K. Samwer: J. Luminescence Vol. 90 (2001), p.3516.

DOI: 10.1063/1.1388022

Google Scholar

[12] S. Schlabach, V. Szaho, D. Volath, A. Braun, R. Clasen: Structure of Aluminia and Zirconia Nanoparticles Synthesized by the Karlsruhe Microwave Plasma Process (Trans Tech Publications, Ltd, Switzerland 2004).

DOI: 10.4028/www.scientific.net/ssp.99-100.191

Google Scholar