Potential of Nano-Sized Rare Earth Fluorides in Optical Applications

Article Preview

Abstract:

Rare earth fluorides are a class of materials with a high potential for optical applications. Fluoride lattices allow high coordination numbers for the hosted rare earth ions, but the high ionicity of the rare earth to fluorine bond leads to a wide band gap and very low vibrational energies. These two essential factors, in particular, contribute to their practicality for use in optical applications based on vacuum ultraviolet (VUV) and near infrared (NIR) excitation. The preparation and optical characteristics of rare earth fluoride nanoparticles and their embedding in polymeric, glassy or porous matrices are very promising for the eventual manufacture of transparent hybrid materials. Recent attempts to control the size of these particles down to the nano-scale and, at the same time, maintaining the performance of their macroscopic counterparts, indicate accessibility of hitherto unrealized optical properties and applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 106)

Pages:

93-102

Citation:

Online since:

September 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.L. Sommerdijk, A. Bril, A.W. de Jager, J. Lumin. 8 (1974) 341.

Google Scholar

[2] W.W. Piper, J.A. DeLuca, F.S. Ham, J. Lumin. 8 (1974) 344.

Google Scholar

[3] R. Pappalardo, L. Lumin. 14 (1976) 159.

Google Scholar

[4] R.T. Wegh et al., J. Lum., 82 (1999) p.93.

Google Scholar

[5] F. Auzel, C. R. Acad. Sci. Paris, 262 (1966) 1016.

Google Scholar

[6] Y. Mita, Phosphor Handbook, eds. S. Shinoya, W. Yen, CRC press, 1999, 643.

Google Scholar

[7] L.F. Johnson, J.E. Geusic, H.J. Guggenheim, T. Kushida, S. Singh, L.G. Van Uitert, Appl. Phys. Lett., 15, 1969, 48.

DOI: 10.1063/1.1652897

Google Scholar

[8] J. Weidlein, u. Müller, K. Dehnicke: Schwingungsfrequenzen II, Thieme, Stuttgart, (1986).

Google Scholar

[9] Y.K. Voron'ko, A.A. Kaminskii, V.V. Osiko, A.M. Prokhorov, Neorganicheskie Materialy 2, 1966, 1161.

Google Scholar

[10] R.M. Macfarlane, F. Tong, A.J. Silversmith, W. Lenth, W., Applied Physics Letters 52, 1988, 1300.

Google Scholar

[11] C. Fouassier in Advanced Inorganic Fluorides, eds. T. Nakajima, B. Zemva, A. Tressaud, Elsevier, 2000, pp.315-328.

Google Scholar

[12] D. Sendor, U. Kynast, Adv. Mater., 14, 2002, 1570.

Google Scholar

[13] S. Fujihara, C. Mochizuki, T. Kimura, J. Non-crystalline Solids, 244, 1999, 267.

Google Scholar

[14] T. Jüstel, D. U. Wiechert, C. Lau, D. Sendor, U. Kynast, Adv. Funct. Mater., 11, 2001, 105.

DOI: 10.1002/1616-3028(200104)11:2<105::aid-adfm105>3.0.co;2-j

Google Scholar

[15] courtesy of Philips Research Laboratories, Aachen, Germany, Dr. T. Juestel.

Google Scholar

[16] M. Takashima in Advanced Inorganic Fluorides, eds. T. Nakajima, B. Zemva, A. Tressaud, Elsevier, 2000, pp.175-207.

Google Scholar

[17] G. Blasse, B. C. Grabmeier: Luminescent Materials, Springer, Berlin (1994).

Google Scholar

[18] R. Van Deun, K. Binnemans, C. Görller-Wallrand, J.L. Adam, J. Phys.: Condens. Matter, 10, 1998, 7231.

DOI: 10.1088/0953-8984/10/32/014

Google Scholar

[19] R.T. Wegh, H. Donker, K. D. Oskam, A. Meijerink, Science, 283, 1999, 663.

Google Scholar

[20] M. Bredol, S. Gutzov, T. Jüstel, J. Non-Cryst. Solids 321, 2003, 225.

Google Scholar

[21] K. Kömpe. H. Borchert, J. Storz, A. Lobo, S. Adams, T. Möller, M. Haase, Angew. Chem. Int. Ed. 42, 2003, 5513.

DOI: 10.1002/anie.200351943

Google Scholar