Evolution of Hydrogen Related Defects in Plasma Hydrogenated Crystalline Silicon under Thermal and Laser Annealing

Article Preview

Abstract:

Boron doped [100]-oriented Cz Si wafers are hydrogenated with a plasma enhanced chemical vapor deposition setup at a substrate temperature of about 260 °C. In-situ Raman spectroscopy is applied on samples under thermal and laser annealing. It is found that different Si-H species have different stabilities. The most stable one is the Si-H bond at the inner surfaces of the platelets. The dissociated energy of Si-H bonds is deduced based on the first order kinetics. It is found that the hydrogen atoms which are released during annealing are trapped again by the platelets and passivate the silicon dangling bonds at the inner surfaces of the platelets or form H2 molecules in the open platelet volume, possibly relating to the basic mechanism of the hydrogen-induced exfoliation of the silicon wafer and the socalled “smart-cut” process.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 108-109)

Pages:

211-216

Citation:

Online since:

December 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. I. Pankove and N. M. Johnson: Hydrogen in semiconductors (Academic Press, USA, 1991).

Google Scholar

[2] R. W. Cahn, E. A. Davis and I. M. Ward: Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, England, 1991).

Google Scholar

[3] H. J. Stein: J. Electron. Mater. 4 (1975), p.159.

Google Scholar

[4] N. N. Gerasimenko, M. Rolle, L. J. Cheng, Y. H. Lee, J. C. Corelli and J. W. Corbett: Phys. Stat. Sol. B 90 (1978), p.689.

Google Scholar

[5] B. N. Mukashev, K. N. Nussuprov and M. F. Tamendarov: Phys. Lett. A 72 (1979), p.381.

Google Scholar

[6] M. K. Weldon, V. E. Marsico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham, J. Sapjeta, W. L. Brown, D. C. Jacobson, Y. Caudano, S. B. Christman and E. E. Chaban: J. Vac Sci. Technol. B 15 (1997), p.1065.

DOI: 10.1109/soi.1997.634964

Google Scholar

[7] M. Bruel: Electron. Lett. 31 (1995), p.1201.

Google Scholar

[8] C. G. Van de Walle, Y. Bar-Yam and S. T. Pantelides: Phys. Rev. Lett. 60 (1998), p.2761.

Google Scholar

[9] F. A. Reboredo, M. Ferconi and S. T. Pantelides: Phys. Rev. Lett. 82 (1999), p.4870.

Google Scholar

[10] J. Grisolia, G. B. Assayag and A. Claverie: Appl. Phys. Lett. 76 (2000), p.852.

Google Scholar

[11] E. V. Lavrov and J. Weber: Phys. Rev. Lett. 87 (2001), p.185502.

Google Scholar

[12] Y. Ma, R. Job, Y. L. Huang, W. R. Fahrner, M. F. Beaufort and J. F. Barbot: J. Electrochem. Soc. 151 (2004), p. G627-G631.

DOI: 10.1149/1.1781613

Google Scholar

[13] Y. Ma, Y. L. Huang, R. Job, W. R. Fahrner: 206 th Meeting of The Electrochemical Society, Honolulu, Hawaii, October 3-8, 2004. See also in Proc. High Purity Silicon VIII, Eds. C.L. Claeys, M. Watanabe, R. Falster and P. Stallhofer, Electrochem. Soc. Ser. PV 2004-05 (2004).

Google Scholar

[14] Y. Ma, Y. L. Huang, R. Job and W. R. Fahrner: Phys. Rev. B 71 (2005), p.045206.

Google Scholar

[15] A. W. R. Leitch, A. Alex and J. Weber: Solid State Commun. 105 (1998), p.215.

Google Scholar

[16] B. Tuttle and C. G. Van de Walle: Phys. Rev. B 59 (1999), p.12884.

Google Scholar

[17] R. Job, A. G. Ulyashin and W. R. Fahrner: Solid State Phenomena 82-84 (2001), p.139.

Google Scholar

[18] Y. Ma, Y. L. Huang, W. Düngen, R. Job and W. R. Fahrner, unpublished.

Google Scholar