SAXS and XAFS Analysis in Forming of Metal Nanoparticles in Water-in-scCO2 Microemulsions

Abstract:

Article Preview

Metal particles of silver (Ag) and copper (Cu) have been synthesized in the presence of Aerosol-OT (AOT) or fluorinated surfactants in water-in-scCO2 microemulsions by the chemical reduction of AgClO4 and Cu(ClO4)2. The formation of Ag particles by the photo-reduction using UV-light have been confirmed by in-situ UV-Vis, X-ray absorption fine structure (XAFS), and small angle X-ray scattering (SAXS) measurements. Cu particles have also been prepared by the addition of a reducing reagent sodium borohydride, and the electronic structure of Cu ionic species has been investigated after reduction in the water-in-scCO2 microemulsions. The average size of aggregates of Ag particles in the microemulsions by means of in-situ SAXS measurements also has been estimated.

Info:

Periodical:

Solid State Phenomena (Volume 114)

Edited by:

Witold Lojkowski and John R. Blizzard

Pages:

321-328

DOI:

10.4028/www.scientific.net/SSP.114.321

Citation:

M. Harada and Y. Kimura, "SAXS and XAFS Analysis in Forming of Metal Nanoparticles in Water-in-scCO2 Microemulsions", Solid State Phenomena, Vol. 114, pp. 321-328, 2006

Online since:

July 2006

Export:

Price:

$35.00

[1] D. L. Feldheim, C. A. Foss, Jr., Metal Nanoparticles; Synthesis, Characterization, and Applications, Marcel Dekker, Inc., New York, (2002).

[2] (a) J. M. Petroski, Z. L. Wang, T. C. Green, M. A. El-Sayed, J. Phys. Chem. B 102 (1998) 3316. (b) T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein, M. A. El-Sayed, Science 272 (1996) (1924).

DOI: 10.1126/science.272.5270.1924

[3] (a) T. Itakura, K. Torigoe, K. Esumi, Langmuir 11 (1995) 4129. (b) H. Einaga, M. Harada, Langmuir 21 (2005) 2578.

[4] (a) K. Esumi, K. Matsuhisa, K. Torigoe, Langmuir 11 (1995) 3285. (b) T. Pal, T. K. Sau, N. R. Jana, Langmuir 13 (1997) 1481.

[5] N. Shirtcliffe, U. Nickel, S. Schneider, J. Colloid Interface Sci. 211 (1999) 122.

[6] (a) A. C. Templeton, W. P. Wuelfing, R. W. Murray, Acc. Chem. Res. 33 (2000) 27. (b) Y. W. Tsai, Y. L. Tseng, L. S. Sarma, D. G. Liu, J. F. Lee, B. J. Hwang, J. Phys. Chem. B 108 (2004) 8148.

[7] (a) K. Kurihara, J. Kizling, P. Stenius, J. H. Fendler, J. Am. Chem. Soc. 105 (1983) 2574. (b) K. Kurihara, J. H. Fendler, J. Am. Chem. Soc. 105 (1983) 6152.

DOI: 10.1021/ja00347a011

[8] (a) B. G. Ershov, A. Henglein, J. Phys. Chem. B 102 (1998) 10663. (b) B. G. Ershov, A. Henglein, J. Phys. Chem. B 102 (1998) 10667. (c) A. Henglein, T. Linnert, P. Mulvaney, Ber. Bunsenges. Phys. Chem. 94 (1990) 1449.

DOI: 10.1021/jp981906i

[9] J. A. Darr, M. Poliakoff, Chem. Rev. 99 (1999) 495.

[10] P. S. Shah, T. Hanrath, K. P. Johnston, B. A. Korgel, J. Phys. Chem. B 108 (2004) 9574.

[11] K. J. Ziegler, R. C. Doty, K. P. Johnston, B. A. Korgel, J. Am. Chem. Soc. 123 (2001) 7797.

[12] P. S. Shah, J. D. Holmes, R. C. Doty, K. P. Johnston, B. A. Korgel, J. Am. Chem. Soc. 122 (2000) 4245.

[13] T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75 (1992) 1019.

[14] T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75 (1992) 2615.

[15] A. A. Galkin, B. G. Kostyuk, N. N. Kuznetsova, A. O. Turakulova, V. V. Lunin, M. Polyakov, Kinetics & Catalysis 42 (2001) 154.

DOI: 10.1023/a:1010496830238

[16] J. D. Holmes, P. A. Bhargava, B. A. Korgel, K. P. Johnston, Langmuir 15 (1999) 6613.

[17] M. Ji, X. Chen, C. M. Wai, J. L. Fulton, J. Am. Chem. Soc. 121 (1999) 2631.

[18] P. S. Shah, S. Husain, K. P. Johnston, B. A. Korgel, J. Phys. Chem. B 105 (2001) 9433.

[19] N. Kometani, Y. Toyoda, K. Asami and Y. Yonezawa, Chem. Lett. 682 (2000).

[20] H. Ohde, F. Hunt and C. M. Wai, Chem. Mater. 13 (2001) 4130.

[21] A. Kameo, T. Yoshimura, K. Esumi, Colloids and Surfaces A 1 (2003).

[22] (a) Y. Kimura, D. Abe, T. Ohmori, M. Mizutani, M. Harada, Colloids and Surfaces A: Physicochem. Eng. Aspects 231 (2003) 131. (b) M. Harada, D. Abe, Y. Kimura, J. Colloid Interface Sci. 292 (2005) 113.

In order to see related information, you need to Login.