X-Ray Analysis of High Pressure Torsion Induced Nanostructures in Ti and Ni

Article Preview

Abstract:

X-ray investigations revealed that the increase in the applied pressure during high pressure torsion (HPT) of commercially pure Ti leads not only to substructure refinement with an increase of the dislocation density and microstrain level but also to an α→ ω phase transition at room temperature. The coexistence of both α and ω phases, the latter known as a high pressure phase, in the ratio approximately of 1:3 has been obtained after removal of thehigh pressure. Texture analysis of electodeposited Ni after HPT discovered a new form of crystallite orientation distribution in the nanocrystalline state. A nearly random orientation crystallite distribution has been observed unlike the “traditional” case of a shear texture forming in cubic symmetry metals. The crystallographic texture data obtained were considered as experimental evidence of the changed plastic deformation mechanisms in nanocrystalline Ni produced by HPT.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

329-336

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Progress in Materials Science Vol. 45 (2) (2000), pp.103-184.

Google Scholar

[2] Valiev R.Z.: Nature Materials Vol. 3 (2004), pp.511-516.

Google Scholar

[3] R.Z. Valiev, A.V. Korznikov, R. R. Mulyukov: Mater. Sci. Eng. A 168 (1993), pp.141-148.

Google Scholar

[4] S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, A. K. Mukherjee: Nature. Vol. 398 №. 6729 (1999), pp.684-686.

DOI: 10.1038/19486

Google Scholar

[5] Languillaume J., Chmelik F., Kapelski G., Bordeaux F., Nazarov A.A., Canova G., Esling C., Valiev R.Z., Baudelet B.: Acta Met. Mater. Vol. 41 (1993) pp.2953-2961.

DOI: 10.1016/0956-7151(93)90110-e

Google Scholar

[6] R.Z. Valiev: NanoStructured Materials Vol. 6 (1995), pp.73-78.

Google Scholar

[7] Wang Y.M., Cheng S., Wei Q.M., Ma E., Nieh T.G., Hamza A.: Scripta Mater. Vol. 51. (2004), pp.1023-1028.

Google Scholar

[8] Williamson G.K., Hall W.H.: Acta Mater. Vol. 1 (1953), pp.22-31.

Google Scholar

[9] Kallend J.S., Kocks U.F., Rollet A.D., Wenk H. -R.: Mater. Sci. Eng.: A 132 (1991), pp.1-11.

Google Scholar

[10] Jamieson J.C.: Science, 140 № 3653 (1963), pp.72-73.

Google Scholar

[11] Vohra Y. K., Sikka S. K. Chidambaram R.: J. Phys. F.: Metal Phys. Vol. 9. № 9 (1979), pp.1771-1783.

Google Scholar

[12] K. Zhang, I.V. Alexandrov, R.Z. Valiev, K. Lu: J. Appl. Phys. Vol. 84 (1998), p.1924-(1927).

Google Scholar

[13] Markmann J., Bunzel P., Rısner H., Liu K.W., Padmanabhan K.A., Birringer R., Gleiter H., Weissmőller: Scripta Mater. Vol. 49 (2003), pp.637-644.

Google Scholar

[14] Siegel R.W.: Mater. Sci. Forum Vol. 235-238 (1997), pp.851-860.

Google Scholar

[15] Nieh T.G., Wadsworth J.: Scr. Met. Mater. Vol. 25 (1991), pp.955-958.

Google Scholar

[16] A.R. Kilmametov, R. Z. Valiev, R.K. Islamgaliev, G.V. Nurislamova: Phys. Met. Metall., 2006 (in press. ).

Google Scholar

[17] X. Z. Liao, A.R. Kilmametov, R. Z. Valiev, H. S. Gao, X. D. Li, A. K. Mukherjee, J. F. Bingert, Y. T. Zhu, Appl. Phys. Lett. 88, 021909 (2006).

DOI: 10.1063/1.2159088

Google Scholar

[18] Nieman G.W., Weertman J.R., Siegel R.W.: Nanostructured materials. Vol. 1 (1992), p.185190.

Google Scholar

[19] Sauvage X., Wetscher F., Pareige P.: Acta Mater. Vol. 53, 7 (2004), pp.2127-2135.

Google Scholar

[20] Yu. R. Kolobov, R.Z. Valiev, G. P. Grabovetskaya: Novosibirsk, Nauka (in Russian) 2001, P. 232.

Google Scholar