Pressure-Assisted Lateral Nanostructuring of the Epitaxial Silicon Layers with SiGe Quantum Wells

Article Preview

Abstract:

Transformations of the SiGe/Si superlattice structures, either annealed at high pressure, or irradiated by high energy ions and subjected to post-implantation annealing, were studied and compared. Both types of treatments were found to lead to the formation of recharged defects clusters, resulting in the appearance of peaks on C-V characteristics, shrinkage of Ge profiles registered by SIMS technique after annealing, and disappearance of peaks in the free carrier profiles. The effects were more pronounced in the case of high energy ion implantation. The results are explained by the vacancy - assisted precipitation of Ge in SiGe layers.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 114)

Pages:

291-296

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.H. Siegel. IEEE Transactions on Microwave Theory and Techniques. Vol. 50 (2003), p.910.

Google Scholar

[2] M. Elkurdi, P. Boucaud, S. Sauvage, G. Fishman, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, I. Sagnes, G. Partciarche. J. Appl. Phys. Vol. 92 (2002), p.1858.

DOI: 10.1063/1.1435063

Google Scholar

[3] E. Kasper Intern. J. Modern Phys. B Vol. 16 (2002), p.4189.

Google Scholar

[4] D.B. Aubertine, P.C. Mcinture, J. Appl. Phys. Vol. 97 (2005), 013531-1.

Google Scholar

[5] A. Antonelli, E.J. Kaxiras, D. Chadi. Phys. Rev. Lett. Vol. 81 (1998), p. (2088).

Google Scholar

[6] I.V. Antonova, C.A. Londos, J. Bak-Misiuk, A.K. Gutacovskii, M. Potsidou, A. Misiuk. Phys. Stat. Sol. (а). Vol. 199 (2003), p.207.

DOI: 10.1002/pssa.200306656

Google Scholar

[7] P.I. Gaiduk, A.N. Larsen, J.L. Harsen, C. Trautmann. Appl. Phys. Lett. Vol. 83 (2003), p.1746.

Google Scholar

[8] S.A.E. Kuma, P.G. Coleman, A. Nejim, F. Cristiano P.L. Hemment. Semicon. Sci. Technol. Vol. 13 (1998), p.394.

Google Scholar

[9] A. Kvit, R.A. Yankov, G. Duscher, G. Rozgonyi, J.M. Glasko. Appl. Phys. Let. Vol. 83 (2003), p.1367.

Google Scholar

[10] H.J. Osten, E. Bugiel, P. Zaumseil. Appl. Phys. Lett. Vol. 64 (1994), p.3440.

Google Scholar

[11] L. Wu, M. Dai, X. Huang, W. Li, K. Chen. J. Vac. Sci. Technol. B Vol. 22 (2004), p.678.

Google Scholar

[12] A.L. Yakimov, A.V. Dvurechenskii, A.L. Nikiforow, O.P. Pchelyakov. Thin Solid Films. Vol. 336 (1998), 332.

Google Scholar

[13] Landolt-Bornstein, Hbd. Phys., Vol. III/17a (Springer-Verlag, Berlin/Heidelburg/New York) (1982).

Google Scholar

[14] E. Bugiel, P. Zaumseil. Appl. Phys. Lett. Vol. 62 (1993), p. (2051).

Google Scholar

[15] P. Zaumseil, G.G. Fischer, Ch. Quick, A. Misiuk. Phys. Stat. Sol. (a) Vol. 153 (1996), p.401.

Google Scholar

[16] P. Zaumseil. J. Phys. D Appl. Phys. Vol. 12 (1999), p. A75.

Google Scholar

[17] S. Fatima, J. Wong-LLeung, J. Fitz Gerald, C. Jagadish. Appl. Phys. Lett. 74, (1999), p.1141.

Google Scholar

[18] N. Sugii. J. Appl. Phys. Vol. 89 (2001), p, 6459.

Google Scholar

[19] P.M. Fahey, P.B. Griffin, J.D. Plummer. Rev. Mod. Phys. Vol. 61 (1989), p.289.

Google Scholar