Structure and Conductivity of Nanostructured Sodium Nitrite

Article Preview

Abstract:

Combined neutron diffraction, dielectric and conductivity measurements of NaNO2 embedded into porous glasses with average pore diameter 7 nm are performed in the ferroelectric and paraelectric phases. The temperature interval of existence of a volume premelted state in this confined material is determined. It is shown that the observed earlier giant growth of dielectric constant above TC can be attributed with an appearance of ionic conductivity due to jumping diffusion (or hopping) of constituent ions. These data are in a good agreement with experimental results of our earlier measurements of temperature evolution of structure of this nanocomposite material.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

221-228

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Kumzerov, S. Vakhrushev, Nanostructures within Porous Materials in Encyclopedia of Nanoscience and Nanotechnology (H. S. Nalwa, Ed. ), American Scientific Publishers, vol. X, pp.1-39, (2003).

Google Scholar

[2] R. Mu, V. M. Malhora, Phys. Rev. B, 44, 4296 (1991).

Google Scholar

[3] S. B. Vakhrushev, Yu. A. Kumzerov, A. Fokin, A. A. Naberezhnov, B. Zalar, A. Lebar, R. Blinc, Phys. Rev. B, 2004 (in press).

Google Scholar

[4] S. V. Pan`kova, V. V. Poborchii, V. G. Solov`ev, J. Phys. Condens. Matter, 8, L203 (1996).

Google Scholar

[5] E. V. Colla, A. V. Fokin, Yu. A. Kumzerov, Solid State Comm., 103, 127, (1997).

Google Scholar

[6] K. Ishikawa, K. Yoshikawa, N. Okada, Phys. Rev. B, 37, 5852 (1988).

Google Scholar

[7] T. Kanata, T. Yoshikawa, K. Kubota, Solid State Comm., 62, 765 (1987).

Google Scholar

[8] Yu. A. Kumzerov, A. A Nabereznov, S. B. Vakhrushev, B. N. Savenko, Phys. Rev. B, 52, 4772 (1995).

Google Scholar

[9] M. J. Benham, J. C. Cook, J. -G. Li, D. K. Ross, P. L. Hull, B. Sarkissian, Phys. Rev. B, 39, 633 (1989).

Google Scholar

[10] E. V. Colla, A. V. Fokin, E. Yu. Koroleva, Yu. A. Kumzerov, S. B. Vakhrushev, B. N. Savenko, NanoStruct. Mater., 12, 963 (1999).

DOI: 10.1016/s0965-9773(99)00278-0

Google Scholar

[11] A. Beskrovny, I. Golosovsky, A. Fokin, Yu. Kumzerov, A. Kurbakov, A. Naberezhnov, S. Vakhrushev, Appl. Phys. A, 74 (Suppl. ), 1001 (2002).

DOI: 10.1007/s003390201600

Google Scholar

[12] A. V. Fokin, Yu. A. Kumzerov, N. M. Okuneva, A. A. Naberezhnov, S B. Vakhrushev, I. V. Golosovsky, A.I. Kurbakov, Phys. Rev. Lett., 89, 175503-1 (2002).

DOI: 10.1103/physrevlett.89.175503

Google Scholar

[13] B. Strijk, C. H. MacGillary, Rec. Trav. Chim., 62, 705 (1943); 65, 127 (1946).

Google Scholar

[14] S. Tanisaki, J. Phys. Soc. Jpn., 16, 579 (1961); 18, 1181 (1963).

Google Scholar

[15] J. Rodrigues-Carvajal, Program FULLPROF, version 2000, LLB CEA, Saclay, France.

Google Scholar

[16] I. Naray-Szabo, Krytalykemia, Academiai Kiado, Budapest, (1969).

Google Scholar

[17] A. Naberezhnov, A. Fokin, Yu. Kumzerov, A. Sotnikov, S. Vakhrushev, B. Dorner, Eur. Phys. J. E, 12, s01 (2003).

DOI: 10.1140/epjed/e2003-01-006-4

Google Scholar

[18] S. Savada, S. Nomura, S. Fujii, I. Yoshida, Phys. Rev. Lett., 1, 320 (1958).

Google Scholar

[19] M. Ichikawa, T. Gustafsson, Ivar Olovsson, Solid State Comm., 123, 135 (2002).

Google Scholar

[20] Y. Asao, I. Yoshida, R. Ando, S. Sawada, J. Phys. Soc. Jpn., 17, 442 (1962).

Google Scholar

[21] F. Brouers, A. Ramsamugh, J. Phys. C: Solid State Phys., 21, 1839 (1988).

Google Scholar