Light-Induced Structural Relaxation and the Photoplastic Effect in Chalcogenide Glasses

Article Preview

Abstract:

The combination of depth-sensing indentation and band-gap illumination has been used to study the photoplastic effect (the reversible influence of light on the flow stress, hardness, and plasticity) in chalcogenide glasses on a nanoscale. The prominent photoplasticity of thin As-Se films has been revealed through deviations in the shape of load-displacement curves during nanoindentation under light illumination from those ones which have been observed for the material in the darkness. The photoinduced changes in static mechanical properties such as nanohardness and elastic (Young’s) modulus have been determined. The highest photoplasticity changes are achieved for As20Se80 films while their photodarkening is the lowest.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

245-250

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. L. Trunov, A. G. Anchugin, Pis'ma Zh. Tekh. Fiz., 18, 37 (1992). (in Russian).

Google Scholar

[2] M. L. Trunov, A. G. Anchugin, Pis'ma Zh. Tekh. Fiz., 18, 78 (1992). (in Russian).

Google Scholar

[3] M. L. Trunov, J. Non-Cryst. Solids, 192-193, 431 (1995).

Google Scholar

[4] M. L. Trunov, V. S. Bilanich, J. Optoelectr. Adv. Mater., 5, 1085 (2003).

Google Scholar

[5] H. Hisakuni, K. Tanaka, Science, 270, 974 (1995).

Google Scholar

[6] H. Fritzsche, Sol. State Commun., 99, 153 (1996).

Google Scholar

[7] J. Li, D. A. Drabold, Phys. Rev. Lett., 85, 2785 (2000).

Google Scholar

[8] K Tanaka, C. R. Chimie, 5, 805 (2002).

Google Scholar

[9] D. Th. Kastrissios, G. N. Paptheodorou, S. N. Yannopoulos, Phys. Rev. B, 65, 165211 (2002).

Google Scholar

[10] S. N. Yannopoulos, Phys. Rev. B, 68, 64206 (2003).

Google Scholar

[11] M. L. Trunov, V.S. Bilanich, Thin Solid Films, 459, 228 (2004).

Google Scholar

[12] M. L. Trunov, Tech. Phys. Lett., 30, 49 (2004).

Google Scholar

[13] S. Ramachandran, J. C. Pepper, D. J. Brady, S.G. Bishop, J. Lightwave Techn., 15, 1371 (1997).

Google Scholar

[14] A. Saliminia, T. Galstian, A. Villeneuve, Phys. Rev. Lett., 85, 4112 (2000).

Google Scholar

[15] W. C. Oliver, G. M. Pharr, J. Mater. Res., 7, 1564 (1992).

Google Scholar

[16] N. G. Olson, C. Leung, X. Wang, Experimental Techniques, 12, 51 (2002).

Google Scholar

[17] S. N. Dub, Mechanical Properties of Thin Films in Depth-Sensing Indentation, Thin Films in Optics and Electronics, Proc. IX Int. Symp., Konstanta, Kharkov, 343 (2003). (in Ukrainian).

Google Scholar

[18] A. Leyland, A. Matthews, Wear, 246, 1 (2000).

Google Scholar

[19] M. F. Thorpe, J. Non-Cryst. Solids, 57, 355 (1983).

Google Scholar

[20] R. A. Street, R. J. Nemanich, G.A.N. Connell, Phys. Rev. B, 18, 6915 (1978).

Google Scholar