Relaxation of Highly Non Equilibrium Charge Carriers in Crystals by Low-Energy Electron Influence

Article Preview

Abstract:

The cascade process describing the energy loss and relaxation or multiplication of highly non-equilibrium secondary electrons and holes in crystalline platinum irradiated by lowenergy electrons is studied. The pair-creation scattering rates are evaluated in the framework of the statistical model taking into account the electron band structure of platinum. Kinetic equations for the excited electron and hole energy distributions are solved numerically in the isotropic scattering approximation for some primary (excitation) energies Ep which do not exceed the plasma energy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

261-266

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Fuggle, J. E. Inglesfield (Eds. ), Unoccupied Electronic States: Fundamentals for XANES, EELS, IPS and BIS, Springer-Verlag, Berlin, (1992).

Google Scholar

[2] A. B. Hayden, T. Valla, D. P. Woodruff, J. Phys.: Condensed Matter, 7, 9475 (1995).

Google Scholar

[3] A. Goldmann, W. Altmann, V. Dose, Solid State Comm., 79, 511 (1991).

Google Scholar

[4] M. Rösler, Particle Induced Electron Emission I in Springer Tracts in Modern Physics, Vol. 122, Springer, Berlin, (1991).

Google Scholar

[5] J. Devooght, J. C. Dehaes, A. Dubus et al., Theoretical Description of Secondary Electron Emission Induced by Electron or Ion Beam Impinging on Solids, Springer-Verlag, Berlin, (1998).

DOI: 10.1007/bfb0041378

Google Scholar

[6] O. F. Panchenko, Surface Sci., 482-485, 723 (2001).

Google Scholar

[7] O. F. Panchenko, J. Electron Spectrosc. Related Phenom., 12, 11 (2002).

Google Scholar

[8] W. Slówko, Vacuum, 52, 441 (1999).

Google Scholar

[9] A. Liebsch, Electronic Excitations at Metal Surfaces, Plenum Press, New York, (1997).

Google Scholar

[10] W. S. M. Werner, Surface Interface Anal., 31, 141 (2001).

Google Scholar

[11] C. J. Tung, R. M. Ritchie, Phys. Rev. B, 16, 4302 (1977).

Google Scholar

[12] C. N. Berglund, W. E. Spicer, Phys. Rev. A, 136, 1030 (1964).

Google Scholar

[13] E. O. Kane, Phys. Rev., 159, 624 (1967).

Google Scholar

[14] Z. J. Ding, X. D. Tang, R. Shimizu, J. Appl. Phys., 89, 718 (2001).

Google Scholar

[15] L. C. Emerson, R. D. Birkhoff, V. E. Anderson, R. M. Ritchie, Phys. Rev. B, 7, 1798 (1973).

Google Scholar

[16] O. F. Panchenko, L. K. Panchenko, J. Electron Spectrosc. Related Phenom., 83, 21 (1997).

Google Scholar

[17] O. F. Panchenko, L. K. Panchenko, Phys. Low-Dim. Struct., 11/12, 131 (2002).

Google Scholar

[18] W. Schröder, E. Peters, J. Hölzl, J. Appl. Phys., 3, 135 (1974).

Google Scholar

[19] D. Pines, Elementary Excitation in Solids, Benjamin, New York, (1963).

Google Scholar

[20] P. A. Wolff, Phys. Rev., 95, 56 (1954).

Google Scholar

[21] D. R. Penn, S. P. Apell, S. M. Girvin, Phys. Rev. Lett., 55, 518 (1985).

Google Scholar

[22] I. S. Tilinin, A. Jablonski, W. S. M. Werner, Prog. Surface Sci., 52, 193 (1997).

Google Scholar

[23] E. N. Sickafus, Phys. Rev. B, 16, 1436 (1977); Surface Sci., 100, 529 (1980).

Google Scholar

[24] D. Fujita, M. Schleberger, S. Tougaard, Surface Interface Anal., 24, 211 (1996).

Google Scholar

[25] O. F. Panchenko, L. K. Panchenko, Solid State Comm., 89, 849 (1994).

Google Scholar

[26] O. F. Panchenko, L. K. Panchenko, Solid State Comm., 101, 483 (1997).

Google Scholar

[27] O. F. Panchenko, L. K. Panchenko, J. A. Schaefer, Surface Sci., 507-510, 192 (2002).

Google Scholar

[28] O. F. Panchenko, Radiation Phys. Chem., 68, 239 (2003).

Google Scholar