Specific Features of Brillouin Spectra at a High-Temperature Phase Transition in Cs5H3(SO4)4xnH2O Crystals

Article Preview

Abstract:

This paper presents detailed Brillouin light scattering studies of the acoustic response of a Cs5H3(SO4)4xnH2O (PCHS) crystal in the vicinity of a superionic (superprotonic) structural phase transition of the first order. Just above the phase transition, splitting of the Brillouin doublet is observed. The ‘two-mode’ behavior of the longitudinal acoustic phonon can be explained by coexistence of phases at a structural phase transition of the first order. Above the phase transition, in the superionic phase, an additional doublet forbidden by the selection rules appears in a narrow temperature interval. It is concluded that an anomalous behavior of Brillouin light scattering can be attributed to the influence of dynamically disordered protons on the phonon subsystem.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 115)

Pages:

279-284

Citation:

Online since:

August 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A I. Baranov, L. A. Shuvalov, N. M. Schagina, Pis'ma Zh. Eksp. Teor. Fiz., 36, 381 (1982).

Google Scholar

[2] A. I. Baranov, R. M. Fedosyuk, N. M. Schagina, L. A. Shuvalov, Ferroelectrics Letter, 2, 25 (1984).

Google Scholar

[3] A. Pawlowski, Cz. Pawlaczyk, F. E. Salman, Z. Chapla, A. Pietraszko, Phase Transition, 8, 25 (1984).

Google Scholar

[4] D. Abramic, J. Dolinsek, R. Blinc, L. A. Shuvalov, Phys. Rev. B, 42, 442 (1990).

Google Scholar

[5] A. I. Baranov, O. A. Kabanov, B. V. Merinov, L. A. Shuvalov, V. V. Dolbinina, Ferroelectrics, 127, 257 (1992).

Google Scholar

[6] B. V. Merinov, A. I. Baranov, L. A. Shuvalov, J. Schneider, H. Schulz, Sol. St. Ionics, 74, 53 (1994).

Google Scholar

[7] Yu. I. Yuzyuk, V. P. Dmitriev, V. V. Loshkarev, L. M. Rabkin, L. A. Shuvalov, Ferroelectrics, 167, 53 (1995).

DOI: 10.1080/00150199508007719

Google Scholar

[8] S. G. Lushnikov, L. A. Shuvalov, Crystallography Reports, 44, 615 (1999).

Google Scholar

[9] A. I. Baranov, O. A. Kabanov, L. A. Shuvalov, JETP-Letters., 58, 548 (1993).

Google Scholar

[10] S. G. Lushnikov, S. N. Gvasaliya, A. I. Fedoseev, V. H. Schmidt, G. F. Tuthill, L. A. Shuvalov, Phys. Rev. Lett., 86, 2838 (2001).

Google Scholar

[11] S. G. Lushnikov, A. V. Belushkin, S. N. Gvasaliya, I. Natkaniec, L. A. Shuvalov, L. S. Smirnov, V. V. Dolbinina, Physica B, 276-278, 483 (2000).

DOI: 10.1016/s0921-4526(99)01704-4

Google Scholar

[12] S. G. Lushnikov, V. H. Schmidt, L. A. Shuvalov, V. V. Dolbinina, Solid State Commun., 113, 639 (2000).

Google Scholar

[13] F. Kadlec, Yu. Yuzyuk, P. Simon, M. Pavel, K. Lapsa, P. Vanek, J. Petzelt, Ferroelectrics 176, 179 (1996).

Google Scholar

[14] A. P. Levanyuk, V. V. Osipov, A. A. Sobyanin, Theory of Light Scattering in Condensed Matter, New York, Plenum Press, p.516, (1976).

Google Scholar

[15] Ch. Barta, G. F. Dobrzhanski, G. M. Zinger, M. F. Limonov, Yu. F. Markov, Sov. Phys. Solid State, 24, 2952 (1982).

Google Scholar

[16] R. Vacher, L. Boyer, Phys. Rev. B, 6, 639 (1972).

Google Scholar

[17] J. B. Boyce, B. A. Huberman, Physics Reports, 51, 191 (1979).

Google Scholar