Electron Transport through Three-Terminal C60 Molecular Bridge

Article Preview

Abstract:

The quantum transmission characteristic of three-terminal C60 molecular bridge is investigated theoretically by using Green's function approach based on tight-binding theory with only one π orbital per carbon atom inside C60 molecule. The transmission spectra that electrons transport through the C60 molecular bridge from one terminal to the other two terminals are obtained. The electronic current distributions inside the molecular bridge are calculated and shown in graphical analogy by the current density method based on Fisher-Lee formula at the energy points E=±0.42, ±1.06 and ±1.5, respectively, where the transmission probabilities appear peaks. We found that the transmission spectra are related to the incident electronic energy, and depend on C60 molecular levels strongly. We also found that the electrons transport through the C60 molecular bridge symmetrically, and the multi-point switching properties depend on the energy. That the current distributions in the C60 molecular bridge agree well with Kirchhoff quantum current momentum conservation law is shown.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

685-688

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. Joachim, J.K. Gimzewski, and A. Aviram, Nature 408, 541-548, (2000).

Google Scholar

[2] H.W. Kroto, J .R. Heath, and S.C. O'Brien, at el, Nature 318, 162-163 (1985).

Google Scholar

[3] W. Kratschmer, L. Lamb, K. Fostiropoulos and D. Huffman, Nature 347, 354-358 (1990).

Google Scholar

[4] S. Saito and A. Oshiyama, Phys. Rev. Lett. 66, 2637-2640 (1991).

Google Scholar

[5] C. Joachim, J.K. Gimzewski, R.R. Schlittler, and C. Chavy, Phys. Rev. Lett. 74, 2102 -2105 (1995).

Google Scholar

[6] M. Paulsson and S. Stafstrom, J. Phys. Condensed Matter 11, 3555-3562 (1999).

Google Scholar

[7] S. Nakanishi and M Tsukada, Phys. Rev. Lett. 87, 126801 (2001).

Google Scholar

[8] O. Gunnarsson and J.E. Han, Nature 405, 1027-1029 (2000).

Google Scholar

[9] J.E. Han and O. Gunnarsson, Phys. Rev. B 61, 8628-8630 (2000).

Google Scholar

[10] E. Koch and O. Gunnarsson, Phys. Rev. B 67, 161402(R)-161405 (2003).

Google Scholar

[11] R.E. Dinnebier, et al, Science 296 , 109-111 (2002).

Google Scholar

[12] E. Koch and O. Gunnarsson, Physica A 280, 166-178 (2000).

Google Scholar

[13] O. Gunnarsson, Nature 408, 528-530 (2000).

Google Scholar

[14] E. Koch and O. Gunnarsson, Phys. Rev. B 67, 161402(R) (2003).

Google Scholar

[15] D.W. Boukhvalov, P.F. Karimov and E.Z. Kurmaev at el, Phys. Rev. B 69, 115425-9 (2004).

Google Scholar

[16] M.S. Fuhrer, J. Nygård, and L. Shih et al, Science 288, 494-497 (2000).

Google Scholar

[17] H. Park, J. Park, A.K. L. Lim, E. H. Anderson, A. Paulalivsatos & P. L. Mceuen, Nature 407, 57-60 (2000).

Google Scholar

[18] J. Park. et al, Nature 417, 722-725 (2002).

Google Scholar

[19] B. W. Smith, M. Monthioux and D. E. Luzzi, Nature, 323-324 (1998).

Google Scholar

[20] G.K. Gueorguiev, J.M. Pacheco and D. Tomanek, Quantum effects in the polarizability of carbon Fullerenes Phys. Rev. Lett 92, 215501, (2004).

Google Scholar

[21] D.W. Boukhvalov, P.F. Karimov and E.Z. Kurmaev at el, Phys. Rev. B 69, 115425-9 (2004).

Google Scholar

[22] R. Yamachika, M. Grobis, A. Wachowiak, and M. F. Crommie, Science 304, 281-284 (2004).

DOI: 10.1126/science.1095069

Google Scholar

[23] R Kato, Electron transport in molecules, (Tokyo; Iwanami) 1-50 (2001).

Google Scholar

[24] R. Landauer, Phys. Lett., 85A, 91-93 (1981).

Google Scholar

[25] M. Büttiker, Y. Imry and R. Landauer et al, Phys. Rev. B 31, 6207-6215 (1985).

Google Scholar

[26] R. Landauer, Z. Phys. B68, 217 (1987).

Google Scholar

[27] M. Büttiker, IBM J. Res. Dev. 32, 63 (1988).

Google Scholar

[28] L. Wang, K. Tagami and M. Tsukada, Jpn. J. App. Phys. 43, 2779 (2004).

Google Scholar

[29] S. Nakanishi and M. Tsukada, Surf. Sci. 438, 305 (1999).

Google Scholar

[30] K. Tagami and M. Tsukada, J. Surf. Sci. Nanotech. 2, 205-209 ( 2004).

Google Scholar

[31] K. Tagami, L. Wang and M. Tsukada, Nano letters 4, 209 (2004).

Google Scholar