Design and Simulation of a Mid-Infrared Quantum Cascade Laser Based on Ge-Si Superlattices

Article Preview

Abstract:

This paper presents a novel valance intersubband laser based on Si-based Si-Ge superlattices grown on a relaxed Si0.5Ge0.5 buffer layer. Effective mass theory is used to calculate the inplane valence subband dispersion of Si-Ge superlattices within 6×6 Kane model. Analysis of the inplane energy dispersion shows that the light-hole effective mass is inverted at off zone center region. The laser structure can be designed with a simple quantum cascade scheme. Our calculation shows that with the electrical pump, it is possible to achieve population inversion between the two subbands at local k space where the light-hole effective mass is inverted. Optical gain of the order 100/cm can be achieved with a pumping current density 10 kA/cm2.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 121-123)

Pages:

677-680

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Rochat, L. Ajili, H. Willenberg and J. Faist, Appl. Phys. Lett. Vol. 81(2002), p.1381.

Google Scholar

[2] N. Rappaport, E. Finkman, T. Bruhnes, P. Boucaud, S. Sauvage, N. Yam, V. Le. Thanh and D. Bouchier, Appl. Phys. Lett. Vol. 77 (2000), p.3224.

DOI: 10.1063/1.1326044

Google Scholar

[3] L. Friedman, G. Sun and R.A. Soref, Appl. Phys. Lett., Vol. 78 (2001), p.401.

Google Scholar

[4] M. El Kurdi, G. Fishman, S. Sauvage and P. Boucaud, Phys. Rev. B, Vol. 68 (2003), p.165333.

Google Scholar

[5] R. W. Kelsall and R. A. Soref, Inter. J. High Speed Elec. and Systems, Vol. 13(2003), p.197.

Google Scholar

[6] N. Rappaport, E. Finkman, T. Bruhnes, et al, Appl. Phys. Lett., Vol. 77 (2000), p.3224.

Google Scholar

[7] G. Dehlinger, L. Diehl, U. Gennser, et al, Science Vol. 290 (2000), p.2277.

Google Scholar

[8] R. People, Phys. Rev. B, Vol. 32 (1985), p.1405.

Google Scholar

[9] R. People and S. K. Sputz, Phys. Rev. B, Vol. 42 (1990), p.8431.

Google Scholar

[10] C. G. Van de Walle and R. M. Martin, Phys. Rev. B, Vol. 34 (1986), p.5621.

Google Scholar

[11] C. G. Van de Walle, Phys. Rev. B Vol. 39 (1989), p.1871.

Google Scholar

[12] A. Kahan, M. Chi, and L. Friedman, J. Appl. Phys. Vol. 75 (1994), p.8012.

Google Scholar

[13] Y. Lu and G. Sun, Chin. Pys. Lett. Vol. 20 (2003), p.2226.

Google Scholar

[14] C. Tserbak and G. Theodorou, J. Appl. Phys., Vol. 76(1994), p.1062.

Google Scholar

[15] M.E. Levinshtein, S.L. Rumyantsev and M.S. Shur (eds), Properties of Advanced Semiconduuctor Materials (John Wiley and Sons, New York, 2001).

Google Scholar

[16] L. Friedman, R. A. Soref, G. Sun and Y. Lu, IEEE J. Selec. Topics Quant. Elect. Vol. 4(1998), p.1029.

Google Scholar