Thickness Dependence of the Crystallization of α-Fe2O3/α-Al2O3(0001) Thin Films Grown by Sputtering

Article Preview

Abstract:

The crystallization of α-Fe2O3/α-Al2O3(0001) thin films has been studied using real-time synchrotron x-ray scattering and atomic force microscope. In the sputter-grown amorphous films of various thicknesses at room temperature, we find the coexistence of α-Fe2O3 and Fe3O4 interfacial crystallites (~50-Å-thick), well aligned to the α-Al2O3[0001] direction. The amorphous precursor is crystallized to the epitaxial α-Fe2O3 grains in three steps with annealing temperature; i) the growth of the well aligned α-Fe2O3 interfacial crystallites to approximately 200-Å-thick, together with the transformation of the Fe3O4 crystallites to the α-Fe2O3 crystallites (< 400°C), ii) the growth of the less aligned α-Fe2O3 grains on top of the well aligned grains (> 400°C), and iii) the nucleation of the different less aligned α-Fe2O3 grains directly on the α-Al2O3 substrate (> 600°C). The surface evolution of the amorphous precursor films after annealing is consistent with the microstructure evolution during the crystallization.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 124-126)

Pages:

1213-1216

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. P. Cowburn, A. M. Moulin, and M. E. Welland: Appl. Phys. Lett. Vol. 71 (1997), p.2202.

Google Scholar

[2] J. W. Geus: Appl. Catal. Vol. 25 (1986), p.313.

Google Scholar

[3] V. Preobrazhensky and P. Pernod: J. Appl. Phys. Vol. 81 (1997), p.5709.

Google Scholar

[4] J. Sarradin, M. Ribes, A. Guessous, and K. Elkacemi: Solid State Ionics Vol. 112 (1998), p.35.

Google Scholar

[5] R. Bertacco, M. Merano, and F. Ciccacci: Appl. Phys. Lett. Vol. 72 (1998), p. (2050).

Google Scholar

[6] Michael F. Toney: Phy. Rev. Lett. Vol. 79 (1997), p.4282.

Google Scholar

[7] W. Weiss and M. Ritter: Phy. Rev. B Vol. 59 (1999), p.5201.

Google Scholar

[8] M. Langell and G. A. Somorjai: J. Vac. Sci. Tech. Vol. 21 (1982), p.858.

Google Scholar

[9] J. S. Corneille, J. -W. He, and D. W. Goodman: Surf. Sci. Vol. 338 (1995), p.211.

Google Scholar

[10] M. Gomi and H. Toyoshima: Jpn. J. Appl. Phys. (1996). Vol. 35 (1996), p. L544.

Google Scholar

[11] Y. Gao, Y. J. Kim, S. A. Chambers, and G. Bai: J. Vac. Sci. Technol. A Vol. 15 (1997), p.332.

Google Scholar

[12] M. S. Yi, H. H. Lee, D. J. Kim, et. al. : Appl. Phys. Lett. Vol. 75 (1999), p.2187.

Google Scholar

[13] S. J. Doh, J. H. Je, and Tae Sik Cho: J. Crystal Growth Vol. 240 (2002), p.355.

Google Scholar