Fundamental Interactions of Fe in Silicon: First-Principles Theory

Article Preview

Abstract:

Interstitial iron and iron-acceptor pairs are well studied but undesirable defects in Si as they are strong recombination centers which resist hydrogen passivation. Thermal anneals often result in the precipitation of Fe. Relatively little information is available about the interactions between Fe and native defects or common impurities in Si. We present the results of first-principles calculations of Fe interactions with native defects (vacancy, self-interstitial) and common impurities such as C, O, H, or Fe. The goal is to understand the fundamental chemistry of Fe in Si, identify and characterize the type of complexes that occur. We predict the configurations, charge and spin states, binding and activation energies, and estimate the position of gap levels. The possibility of passivation is discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

233-240

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.A. Istratov, H. Hieslmair, and E.R. Weber, Appl. Phys. A 69 (1999), 13.

Google Scholar

[2] A.A. Istratov, H. Hieslmair, and E.R. Weber, Appl. Phys. A 70 (2000), 489.

Google Scholar

[3] G. W. Ludwig and H.H. Woodbury, Phys. Rev. Lett. 5 (1960), 98.

Google Scholar

[4] G. Feher, Phys. Rev. 114, (1959), 1219.

Google Scholar

[5] A. Thilderkvist, G. grossmann, M. Kleverman, H.G. Grimmeiss, Phys. Rev. B 58 (1998), 7723.

Google Scholar

[6] H. Weihrich and H. Overhof, Phys. Rev. B 54 (1996), 4680.

Google Scholar

[7] K. Wunstel and P. Wagner, Appl. Phys. A 27 (1982), 207.

Google Scholar

[8] K. Nakashima and M. Chijiiwa, Jpn. J. Appl. Phys. 25 (1986), 234.

Google Scholar

[9] O.O. Awadelkarim and B. Monemar, J. Appl. Phys. 64 (1988), 6306.

Google Scholar

[10] A. Rohatgi, J.A. Davis, R.H. Hopkins, P. Rai-Choudhur, and P.G. McMullin, Sol. St. Electron. 23 (1980), 415.

Google Scholar

[11] H. Lemke, Phys. Stat. Sol. A 64 (1981), 215.

Google Scholar

[12] K. Wunstel, K.H. Froehner, and P. Wagner, Physica B&C 116 (1983), 301.

Google Scholar

[13] V.B. Voronkov, A.A. Lebedev, A.T. Mamadalimov, B.M. Urunbaev, and T.A. Usmanov, Sov. Phys. Semic. 14 (1980), 1217.

Google Scholar

[14] H. Feichtinger, J. Waltl, and A. Gschwandtner, Sol. St. Commun. 27 (1978), 867.

Google Scholar

[15] T. Heiser and A. Mesli, Appl. Phys. Lett. 58, 2240 (1991); Phys. Rev. Lett. 68 (1992), 978.

Google Scholar

[16] H. Takahashi, M. Suezawa, and K. Sumino, Phys. Rev. B 46 (1992), 1882.

Google Scholar

[17] M. Sanati, N. Gonzalez Szwacki, and S.K. Estreicher, Phys. Rev. B (submitted).

Google Scholar

[18] G.G. DeLeo, G.D. Watkins, and W. Beall Fowler, Phys. Rev. 23 (1981), 1851; 25 (1982), 4962; 25 (1982), 4972.

Google Scholar

[19] See A. Zunger, Sol. State Phys. 39 (1986), 275 and references therein.

Google Scholar

[20] F. Beeler, O.K. Andersen, and M. Scheffler, Phys. Rev. Lett. 55 (1985), 1498; Phys. Rev. B 41 (1990), 1603.

Google Scholar

[21] H. Weihrich and H. Overhof, Phys. Rev. B 54 (1996), 4680.

Google Scholar

[22] L.V.C. Assali and J.R. Leite, Phys. Rev. B 36 (1987), 1296.

Google Scholar

[23] M. Sugimoto and A. Seki, Mater. Sci. Forum 196-201 (1996), 1339.

Google Scholar

[24] S. Zhao, L.V.C. Assali, J.F. Justo, G.H. Gilmer, L.C. Kimerling, J. Appl. Phys. 90 (2001), 2744.

Google Scholar

[25] H. Overhof and H. Weihrich, Phys. Rev. B 55 (1997), 10508.

Google Scholar

[26] G. Weyer, S. Degroote, M. Famciulli, V.N. Fedoseyev, G. Langouche, V.I. Mishin, A. -M. Van Bavel, A. Vantomme, and the ISOLDE collaboration, Mater. Science Forum 258-263 (1997), 437.

DOI: 10.4028/www.scientific.net/msf.258-263.437

Google Scholar

[27] Y. Yoshida, S. Ogawa, and K. Arikawa, Physica B 340-342 (2003), 605; Y. Yoshida, Y. Kobayashi, K. Hayakawa, K. Yukihira, A. Yoshida, H. Ueno, F. Shimura, and F. Ambe, Physica B 376-377 (2006), 69.

DOI: 10.1016/j.physb.2005.12.019

Google Scholar

[28] U. Wahl, J.G. Correia, E. Rita, J.P. Araújo, J.C. Soares, and the ISOLDE collaboration, Phys. Rev. B 72 (2005), 014115 and Nucl. Instr. Meth. B 253 (2006), 167.

Google Scholar

[29] A. Zunger and U. Lindefelt, Phys. Rev. B 26 (1982), 5989.

Google Scholar

[30] VASP 2003 at http: /cms. mpi. univie. ac. at/vasp.

Google Scholar

[31] G. Kresse and J. Hafner, Phys. Rev. B 47 (1993), 558.

Google Scholar

[32] G. Kresse and J. Furthm\"uller, Phys. Rev. B 54 (1996), 1116.

Google Scholar

[33] G. Kresse and D. Joubert, Phys. Rev. B 59 (1999), 1758.

Google Scholar

[34] P.E. Blöchl, Phys. Rev. B 50 (1994), 17953.

Google Scholar

[35] D. Sánchez-Portal, P. Ordejón, E. Artacho, and J.M. Soler, Int. J. Quant. Chem. 65 (1997), 453.

Google Scholar

[36] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J.M. Soler, Phys. Stat. Sol. (b) 215 (1999), 809.

Google Scholar

[37] J.P. Perdew in Electronic Structure of Solids '91, ed. P. Ziesche and H. Eschring (Akademie Verlag, Berlin, 1991), p.11.

Google Scholar

[38] J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996), 3865.

Google Scholar

[39] H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13 (1976), 5188.

Google Scholar

[40] D. Vanderbilt, Phys. Rev. B 41 (1990), 7892.

Google Scholar

[41] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6 (1996), 15.

Google Scholar

[42] N. Troullier and J.L. Martins, Phys. Rev. B 43 (1991), (1993).

Google Scholar

[43] O.F. Sankey and D.J. Niklevski, Phys. Rev. B 40 (1989), 3979; O.F. Sankey, D.J. Niklevski, D.A. Drabold, and J.D. Dow, Phys. Rev. B 41 (1990), 12750.

Google Scholar

[44] A.A. Demkov, J. Ortega, O.F. Sankey, and M.P. Grumbach, Phys. Rev. B 52 (1995), 1618.

Google Scholar

[45] J. Izquierdo, A. Vega, L.C. Balbás, D. Sánchez-Portal, J. Junquera, E. Artacho, J.M. Soler, and P. Ordejón, Phys. Rev. B 61 (2000), 13639.

DOI: 10.1103/physrevb.61.13639

Google Scholar

[46] V.M. García-Suárez, C.M. Newman, C.J. Lambert, J.M. Pruneda, and J, Ferrer, J. Phys.: Condens. Matter 16 (2004), 5453.

Google Scholar

[47] J.P. Goss, M.J. Shaw, and P.R. Briddon in Theory of Defects in Semiconductors, ed. D.A. Drabold and S.K. Estreicher (Springer, Berlin, 2007), p.69.

Google Scholar

[48] P.E. Blöchl, Phys. Rev. B 50 (1994), 17953.

Google Scholar

[49] S.K. Estreicher, D. West, J. Goss, S. Knack, and J. Weber, Phys. Rev. Lett. 90 (2003), 035504.

Google Scholar

[50] See Early Stage of Oxygen Precipitation in Silicon, ed. R. Jones (Kluwer, Dordrecht, 1996).

Google Scholar

[51] D. West, S.K. Estreicher, S. Knack, and J. Weber, Phys. Rev. B 68 (2003), 035210.

Google Scholar

[52] S.K. Estreicher, M. Sanati, D. West, and F. Ruymgaart, Phys. Rev. B 70, 125209 (2004).

Google Scholar

[53] Handbook of Chemistry and Physics, ed. D.R. Lide (CRC press, Boca Raton, 1995).

Google Scholar

[54] S.K. Estreicher, Mat. Sci. Engr. R 14 (1995), 319.

Google Scholar

[55] J. Weber, MRS Proc. 513 (1998), 345.

Google Scholar

[56] J. -U. Sachse. E.Ö. Sveinbjörnsson, N. Yarykin, J. Weber, Mater. Sci. Engr. B 58 (1999), 134.

Google Scholar

[57] N. Gonzalez and S.K. Estreicher, to be published.

Google Scholar

[58] T. Sadoh, K. Tsukamoto, A. Baba, D. Bai, A. Kenjo, T. Tsurushima, H. Mori, and H. Nakashima, J. Appl. Phys. 82, 3828 (1997).

DOI: 10.1063/1.365746

Google Scholar