A Theoretical Study of Copper Contaminated Dislocations in Silicon

Article Preview

Abstract:

Recently, the interaction of copper with dislocations in p-type Si/SiGe/Si structures has been investigated experimentally and a new dislocation related DLTS-level at Ev +0.32 eV was detected after intentional contamination with copper. To determine the origin of this newly detected level, in this work we present first density functional calculations of substitutional copper at 90◦ and 30◦ partial dislocations in silicon. Defect–dislocation binding energies are determined and electrical gap levels are calculated and compared with the experimental data. As a result, the observed level at Ev + 0.32 eV is tentatively assigned to the single acceptor level of substitutional copper at the dislocation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

259-264

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Mesli and T. Heiser: Defect and Diffusion Forum Vol. 131-132 (1996), p.89.

Google Scholar

[2] A. A. Istratov and E. R. Weber: Appl. Physics A Vol. 66 (1998), p.123.

Google Scholar

[3] A. A. Istratov and E. R. Weber: J. Electrochem. Society Vol. 149 (2002), p. G21.

Google Scholar

[4] S. Knack: Materials Science in Semiconductor Processing Vol. 7 (2004), p.125.

Google Scholar

[5] J. Weber, H. Bauch, and R. Sauer: Phys. Review B Vol. 25 (1982), p.7688.

Google Scholar

[6] M. B. Shabani, T. Yoshimi, and H. Abe: J. Electrochem. Society Vol. 143 (1996), p. (2025).

Google Scholar

[7] M. Seibt, M. Griess, A. A. Istratov, H. Hedemann, A. Sattler, and W. Schr¨oter: Phys. Stat. Solidi A Vol. 166 (1998), p.171.

DOI: 10.1002/(sici)1521-396x(199803)166:1<171::aid-pssa171>3.0.co;2-2

Google Scholar

[8] M. Seibt, H. Hedemann, A. A. Istratov, F. Riedel, A. Sattler, and W. Schr¨oter: Phys. Stat. Solidi A Vol. 171 (1999), p.301.

DOI: 10.1002/(sici)1521-396x(199901)171:1<301::aid-pssa301>3.0.co;2-p

Google Scholar

[9] N. Toyama, Solid-State Electronics Vol. 26 (1982), p.37.

Google Scholar

[10] A. A. Istratov, H. Hieslmair, C. Flink, T. Heiser, and E. R. Weber: Appl. Phys. Letters Vol. 71 (1997), p.2349.

DOI: 10.1063/1.120026

Google Scholar

[11] F. Beeler, O. K. Andersen, and M. Scheffler: Phys. Review B Vol. 41 (1990), p.1603.

Google Scholar

[12] S. K. Estreicher: Phys. Review B Vol 60 (1999), p.5375.

Google Scholar

[13] C. D. Latham, M. Atalo, R. M. Nieminen, R. Jones, S. ¨Oberg, and P. R. Briddon: Phys. Review B Vol. 72 (2005), p.235205.

Google Scholar

[14] F. J. H. Ehlers, A. P. Horsfield, and D. R. Bowler: Phys. Review B Vol. 73 (2006), p.165207.

Google Scholar

[15] S. D. Brotherton, J. R. Ayres, A. Gill, H. W. van Kesteren, and F. J. A. M. Greidanus: J. Appl. Physics Vol. 62 (1987), p.1826.

Google Scholar

[16] H. Lehmke: Phys. Stat. Solidi A Vol. 95 (1986), p.665.

Google Scholar

[17] C. B. Collins and R. O. Carlson: Phys. Review Vol. 108 (1957), p.1409.

Google Scholar

[18] R. N. Hall and J. H. Racette: J. Appl. Physics Vol. 35 (1964), p.379.

Google Scholar

[19] M. Kittler, C. Ulhaqbouillet, and V. Higgs: J. Appl. Physics Vol. 78 (1995), p.4573.

Google Scholar

[20] O. F. Vyvenko, M. Kittler, and W. Seifert: J. Appl. Physics Vol. 96 (2004), p.6425.

Google Scholar

[21] O. F. Vyvenko, M. Kittler, W. Seifert, and M. V. Trushin: Phys. Stat. Solidi C Vol. 2 (2005), p.1852.

Google Scholar

[22] N. Lehto: Phys. Review B Vol. 55 (1997), p.15601.

Google Scholar

[23] P. E. Batson: Phys. Rev. Letters Vol. 83 (1999), p.4409.

Google Scholar

[24] J. P. Hirth and J. Lothe: Theory of Dislocations (Wiley, New York, 1962).

Google Scholar

[25] R. Jones: J. Phys. (Paris), Colloq. Vol. 40 (1979), p. C6-33.

Google Scholar

[26] R. Jones, A. Umerski, P. Sitch, M. I. Heggie, and S. ¨Oberg: Phys. Stat. Solidi A Vol. 137 (1993), p.389.

Google Scholar

[27] S. ¨Oberg, P. K. Sitch, R. Jones, and M. I. Heggie: Phys. Rev. Letters Vol. 51 (1995), p.13138.

Google Scholar

[28] J. Bennetto, R. W. Nunes, and D. Vanderbilt: Phys. Rev. Letters Vol. 79 (1997), p.245.

Google Scholar

[29] N. Lehto and S. ¨Oberg: Phys. Review B Vol. 56 (1997), p.12706.

Google Scholar

[30] A. T. Blumenau, R. Jones, S. ¨Oberg, P. R. Briddon, and T. Frauenheim: Phys. Rev. Letters Vol. 87 (2001), p.187404.

Google Scholar

[31] A. T. Blumenau, R. Jones, S. ¨Oberg, T. Frauenheim, and P. R. Briddon: J. Phys.: Condens. Matter Vol. 12 (2001), p.10123.

Google Scholar

[32] P. R. Briddon and R. Jones: Phys. Stat. Solidi (b) Vol. 217 (2000), p.131.

Google Scholar

[33] J. P. Goss, M. J. Shaw, and P. R. Briddon: Topics in Applied Physics Vol. 104 (2007), p.69.

Google Scholar

[34] C. Hartwigsen, S. Goedecker, and J. Hutter: Phys. Review B Vol. 58 (1998), p.3614.

Google Scholar

[35] J. Coutinho, V. J. B. Torres, R. Jones, and P. R. Briddon: Phys. Rev. B Vol. 67 (2003), p.035205.

Google Scholar

[36] A. Resende, R. Jones, S. ¨Oberg, and P. R. Briddon: Phys. Rev. Letters Vol. 82 (1999), p.2111.

Google Scholar

[37] N. Yarykin, J. -U. Sachse, J. Weber, and H. Lemke: Mater. Sci. Forum Vol. 258-263 (1997), p.201.

Google Scholar

[38] N. Yarykin, J. -U. Sachse, J. Weber, and H. Lemke: Phys. Review B Vol. 59 (1999), p.5551 This article was processed using the LATEX macro package with TTP style.

Google Scholar