Modeling of the Diffusion and Activation of Arsenic in Silicon Including Clustering and Precipitation

Article Preview

Abstract:

We have developed a diffusion and activation model for implanted arsenic in silicon. The model includes the dynamic formation of arsenic-vacancy complexes (As4V) as well as the precipitation of a SiAs phase. The latter is mandatory to correctly describe concentrations above solid solubility while the former are needed to describe the reduced electrical activity as well as the generation of self-interstitials during deactivation. In addition, the activation state after solid-phase epitaxy and the segregation at the interface to SiO2 are taken into account. After implementation using the Alagator language in the latest version of the Sentaurus Process Simulator of Synopsys, the parameters of the model were optimized using reported series of diffusion coefficients for temperatures between 700 °C and 1200 °C, and using several SIMS profiles covering annealing processes from spike to very long times with temperatures between 700 °C and 1050 °C and a wide distribution of implantation energies and doses. The model was validated using data from flash-assisted RTP and spike annealing of ultra-low energy arsenic implants.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

277-282

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Sentaurus Process User Guide, version Y-2006. 06 (2006).

Google Scholar

[2] K. Suzuki, Y. Kataoka, S. Nagayama, C. W. Magee, T. H. Büyüklimanli, and T. Nagayama, IEEE Transactions on electron devices, Vol. 54 (2007), p.262.

DOI: 10.1109/ted.2006.888676

Google Scholar

[3] A. Nylandsted Larsen, P. E. Andersen, P. Gaiduk, and K. Kyllesbech Larsen, Materials Science and Engineering B, Vol. 4 (1989), p.107.

DOI: 10.1016/0921-5107(89)90225-0

Google Scholar

[4] A. Nylandsted Larsen, K. Kyllesbech Larsen, P. E. Andersen, and B. G. Svensson, J. Appl. Phys., Vol. 73 (1993), p.691.

Google Scholar

[5] J. Murota, E. Arai, K. Kobayashi, and K. Kudo, J. Appl. Phys., Vol. 50 (1979), p.804.

Google Scholar

[6] B. J. Masters and J. M. Fairfield, J. Appl. Phys., Vol. 40 (1969), p.2390.

Google Scholar

[7] R.B. Fair, Concentration profiles of diffused dopants in silicon, in Impurity Doping Processes In Silicon, edited by F.F.Y. Wang North-Holland Publishing Company (1981).

DOI: 10.1016/b978-0-444-86095-8.50012-4

Google Scholar

[8] K. Suzuki, FUJITSU Sci. Tech. J., Vol. 39 (2003), p.138.

Google Scholar

[9] P. Pichler, Intrinsic Point defects, Impurities, and Their Diffusion in Silicon, Springer-Verlag (2004).

Google Scholar

[10] D. Nobili, S. Solmi, A. Parisini, M. Derdour, A. Armigliato, and L. Moro, Phys. Rev. B, Vol. 49 (1994), p.2477.

DOI: 10.1103/physrevb.49.2477

Google Scholar

[11] S. Solmi and D. Nobili, J. Appl. Phys. Vol. 83 (1998), p.2484.

Google Scholar

[12] A. Nylandsted Larsen, B. Christensen, and S. Y. Shiryaev, J. Appl. Phys., Vol. 71 (1992), p.4854.

Google Scholar

[13] D. Nobili, S. Solmi, M. Merli, and J. Shao, Journal of The Electrochemical Society, Vol. 146 (1999), p.4246.

Google Scholar

[14] D. Nobili, S. Solmi, and J. Shao, J. Appl. Phys., Vol. 90 (2001), p.101.

Google Scholar

[15] A. Parisini, D. Nobili, A. Armigliato, M. Derdour, L. Moro, and S. Solmi, , Applied Physics A, Vol. 54 (1992), p.221.

DOI: 10.1007/bf00323840

Google Scholar

[16] F. Iacona, V. Raineri, and F. La Via, Physical Review B, Vol. 58 (1998), p.10990.

Google Scholar

[17] R. Kasnavi, Y. Sun, R. Mo, P. Pianetta, P. B. Griffin and J. D. Plummer, J. Appl. Phys. Vol. 87 (2000), p.2255.

Google Scholar

[18] M. Ferri, S. Solmi, A. Parisini M. Bersani, D. Giubertoni, and M. Barozzi, J. Appl. Phys., Vol. 99 (2006), p.113508.

DOI: 10.1063/1.2200587

Google Scholar

[19] C. Steen, P. Pichler, H. Ryssel, L. Pei, G. Duscher, M. Werner, J. van der Berg, W. Windl, to be published at Mater. Res. Symp. Proc., Vol. 994 (2007).

DOI: 10.1557/proc-0994-f08-02

Google Scholar

[20] F. Lau, L. Mader, C. Mazure, Ch. Werner, and M. Orlowski, Appl. Phys. A, Vol. 49 (1989), p.671.

Google Scholar

[21] C. Steen, A. Martinez-Limia, P. Pichler, H. Ryssel, L. Pei, G. Duscher, W. Windl, to be published at the Proceedings of the 37th European Solid-State Device Research Conference, ESSDERC (2007).

DOI: 10.1109/essderc.2007.4430929

Google Scholar

[22] B. J. Pawlaka, R. Duffy, T. Janssens, W. Vandervorst, K. Maex, A. J. Smith, N. E. B. Cowern, T. Dao, and Y. Tamminga, Applied Physics Letters, Vol. 87 (2005), p.031915.

DOI: 10.1063/1.1997276

Google Scholar

[23] C. Tsamis, D. Skarlatos, G. BenAssayag, A. Claverie, W. Lerch, and V. Valamontes, Applied Physics Letters, Vol. 87 (2005), p.201903.

DOI: 10.1063/1.2130397

Google Scholar

[24] V. Krishnamoorthy, K. Moller,K. S. Jones, D. Venables, J. Jackson, and L. Rubin, J. Appl. Phys., Vol. 84 (1998), p.5997.

Google Scholar

[25] S. Solmi, M. Ferri, M. Bersani, D. Giubertoni, V. Soncini, J. Appl. Phys,. Vol. 94 (2003), p.4950.

DOI: 10.1063/1.1609640

Google Scholar

[26] M. Dalponte, H. Boudinov, L. V. Goncharova, D. Starodub, E. Garfunkel, and T. Gustafsson, J. Appl. Phys., Vol. 96 (2004), p.7388.

Google Scholar

[27] W. Lerch, S. Paul, J. Chan, S. McCoy, J. Gelpey, F. Cristiano, F. Severac, P. F. Fazzini, D. Bolze, P. Pichler, A. Martinez, A. Mineji, and S. Shishiguchi, International Workshop on Junction Technology, IWJT '07 (2007).

DOI: 10.1109/iwjt.2007.4279966

Google Scholar