Effect of Hydrostatic Pressure on Self-Interstitial Diffusion in Si, Ge, Si<Ge> Crystals: Quantum-Chemical Simulations

Article Preview

Abstract:

A theoretical modeling of the diffusion of self-interstitials in silicon and germanium crystals both at normal and high hydrostatic pressure has been carried out using molecular mechanics, semiempirical (PM3, PM5) and ab-initio (SIESTA) methods. According to the simulation for the Si and Ge neutral interstitials (I0) both in silicon and germanium crystals more stable configuration is <110> split interstitial. T is the stable configuration for the double positive interstitial I++, but the interstitial is displaced from the high-symmetry site. Stability of <110> splitinterstitial is not changed under hydrostatic pressure. The activation barriers for the diffusion of interstitials were determined and equal to ΔEa(Si)(<110> -> T1)=0.69 eV; ΔEa (Ge)(<110> -> T1)=1.1 eV. For mixed interstitials the calculated activation barriers equal Si Emix = 1.06 eV, Ge Emix = 0.86 eV. Hydrostatic pressure decreases the activation barriers ΔEa(Si), ΔEa (Ge).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

271-276

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Erko, N. V. Abrosimov, V. Alex, Cryst. Res. Techn. Vol. 37 (2002), p.685.

Google Scholar

[2] Damien Caliste, Pascal Pochet, Thierry Deutsch, and Frédéric Lançon: Phys Rev B Vol. 75 (2007), 125203.

Google Scholar

[3] P. Ramanarayanan, K. Cho, and B. M. Clemens, J. Appl. Phys. Vol. 94 (2003), p.174.

Google Scholar

[4] M. D. Moreira, R. H. Miwa, and P. Venezuela, Phys. Rev. B Vol. 70 (2004), 115215.

Google Scholar

[5] L. Wang, P. Clancy, and C. S. Murthy, Phys. Rev. B Vol. 70 (2004), 165206.

Google Scholar

[6] D. Sánchez-Portal, P. Ordejón, E. Artacho, and J.M. Soler, Int. J. Quant. Chem. Vol. 65, (1997), p.453.

Google Scholar

[7] E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, and J.M. Soler, Phys. Status Solidi B Vol. 215 (1999), p.809.

Google Scholar

[8] H. Balamane, T. Halicioglu, and W. A. Tiller. Phys. Rev. B Vol. 46 (1992), p.2250.

Google Scholar

[9] Vasilii Gusakov, Solid State Phenomena Vol. 108 - 109, (2005), p.413.

Google Scholar

[10] J. Marian, B. D. Wirth, A. Caro, B. Sadigh, G. R. Odette, J. M. Perlado, and T. Diaz de la Rubia. Phys. Rev. B Vol. 65 (2002) 144102.

DOI: 10.1103/physrevb.65.144102

Google Scholar

[12] M. Posselt, F. Gao, D. Zwicker. Phys. Rev. B Vol. 71 (2005) 245202.

Google Scholar