Theoretical Aspects on the Formation of the Tri-Interstitial Nitrogen Defect in Silicon

Article Preview

Abstract:

In this paper we investigate the formation of interstitial nitrogen trimers N3 which have been suggested as a fast-diffusing species in silicon recently. Out-diffusion profiles of nitro- gen show the involvement of at least two independent nitrogen related defects in the diffusion process depending on the nitrogen concentration at different depths of the sample. When the nitrogen concentration is small it is proposed that nitrogen trimers are formed in a two step process. We present the structural properties of such a defect using density functional theory and examine the energetics of the two proposed reactions leading to the formation of N3.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 131-133)

Pages:

265-270

Citation:

Online since:

October 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Sumino, T. Yonenaga, M. Imai, and T. Abe: J. Appl. Physics Vol. 54 (1983), p.5016.

Google Scholar

[2] V. V. Voronkov and R. Falster: Mater. Sci. Eng. B Vol. 114-115 (2004), p.130.

Google Scholar

[3] Q. Sun, J. Lagowski, and H. C. Gatos: J. Appl. Physics Vol. 71 (1990), p.3760.

Google Scholar

[4] G. Kissinger, A. Huber, K. Nakai, O. Lysytskij, T. M¨uller, H. Richter, and W. von Ammon: Appl. Phys. Letters Vol. 87 (2005), p.101904.

DOI: 10.1063/1.2041835

Google Scholar

[5] R. Jones, S. ¨Oberg, F. Berg Rasmussen, and B. Bech Nielsen: Phys. Rev. Letters Vol. 72 (1994), p.1882.

Google Scholar

[6] J. P. Goss, I. Hahn, R. Jones, P. R. Briddon, and S. ¨Oberg: Phys. Review B Vol. 67 (2003), p.045206.

Google Scholar

[7] N. Fujita, R. Jones, J. P. Goss, P. R. Briddon, and S. ¨Oberg: Appl. Phys. Letters Vol. 87 (2005), p.021902.

Google Scholar

[8] N. Stoddard, P. Pichler, G. Duscher, and W. Windl, Phys. Rev. Letters Vol. 95 (2005), p.025901.

Google Scholar

[9] R. Jones and N. Fujita, unpublished.

Google Scholar

[10] V. V. Voronkov and R. Falster J. of Crystal Growth Vol. 273 (2005), p.412.

Google Scholar

[11] V. V. Voronkov, and R. Falster: ECS Transactions Vol. 3 (2006), p.113.

Google Scholar

[12] H. Sawada and K. Kawakami: Phys. Rev. B Vol. 62 (2000), p.1851.

Google Scholar

[13] P. R. Briddon and R. Jones: Phys. Stat. Solidi (b) Vol. 217 (2000), p.131.

Google Scholar

[14] C. Hartwigsen, S. Goedecker, and J. Hutter: Phys. Review B Vol. 58 (1998), p.3614.

Google Scholar

[15] H. J. Monkhorst and J. D. Pack: Phys. Review B Vol. 13 (1976), p.5188.

Google Scholar

[16] T. A. G. Eberlein, N. Pinho, R. Jones, B. J. Coomer, J. P. Goss, P. R. Briddon, and S. ¨Oberg: Physica B - Cond. Matter Vol. 308 (2001), p.454.

DOI: 10.1016/s0921-4526(01)00723-2

Google Scholar

[17] W. Windl: oral presentation at the ECS Fall Meeting (2006), Cancun, Mexico This article was processed using the LATEX macro package with TTP style.

Google Scholar