[1]
J.D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. London A Vol. 241 (1957), p.376.
DOI: 10.1098/rspa.1957.0133
Google Scholar
[2]
J.F. Nye: Some geometrical relations in dislocated crystals. Acta Metallurgica Vol. 1 (1953), p.153.
DOI: 10.1016/0001-6160(53)90054-6
Google Scholar
[3]
E. Kröner: Continuum theory of dislocations and self-stresses. Ergebnisse der Angewandten Mathematik Vol. 5 (1958), p.1327.
Google Scholar
[4]
E. Kröner: Benefits and shortcomings of the continuous theory of dislocations. Int. J. Solids and Struct. Vol. 38 (2001), p.1115.
Google Scholar
[5]
C. Teodosiu: Elastic Models of Crystal Defects. Springer-Verlag, Berlin (1982).
Google Scholar
[6]
T. Mura: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Boston (1987).
Google Scholar
[7]
S. Nishikawa and S. Kikuchi: The diffraction of cathode rays by calcite. Proc. Imperial Acad. (Japan) Vol. 4 (1928), p.475.
Google Scholar
[8]
M.N. Alam, M. Blackman and D.W. Pashley: High-angle Kikuchi patterns. Proc. Royal Soc. London A Vol. 221 (1954), p.224.
Google Scholar
[9]
J.A. Venables and C.J. Harland: Electron back-scattering patterns - A new technique for obtaining crystallographic information in the scanning electron microscope. Phil. Mag. Vol. 27 (1973), p.1193.
DOI: 10.1080/14786437308225827
Google Scholar
[10]
B.L. Adams, S.J. Wright and K. Kunze: Orientation imaging: The emergence of a new microscopy. Metallurgical Transactions A (Physical Metallurgy and Materials Science) Vol. 24A (1993), p.819.
DOI: 10.1007/bf02656503
Google Scholar
[11]
A.J. Schwartz, M. Kumar and B.L. Adams (editors): Electron Backscatter Diffraction in Materials Science. Kluwer Academic / Plenum Publishers, New York (2000).
DOI: 10.1180/s0026461x00033132
Google Scholar
[12]
A.J. Schwartz, M. Kumar, B.L. Adams and D.P. Field (editors): Electron Backscatter Diffraction in Materials Science, 2nd Edition. Springer, New York (2009).
Google Scholar
[13]
S. Sun, B.L. Adams and W.E. King: Observations of lattice curvature near the interface of a deformed aluminium bicrystal. Phil. Mag. A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties Vol 80 (2000), p.9.
DOI: 10.1080/014186100250985
Google Scholar
[14]
B.S. El-Dasher, B.L. Adams and A.D. Rollett: Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycrystals. Scripta Materialia Vol. 48 (2003), p.141.
DOI: 10.1016/s1359-6462(02)00340-8
Google Scholar
[15]
D. Field: Recent advances in the application of orientation imaging. Ultramicroscopy Vol. 67 (1997), p.1.
Google Scholar
[16]
J. Kacher and B.L. Adams: Resolution considerations for EBSD-based dislocation density estimates. Scripta Materialia Submitted (2009).
Google Scholar
[17]
K.Z. Troost, P. Van der Sluis and D.J. Gravesteijn: Microscale elastic-strain determination by backscatter Kikuchi diffraction in the scanning electron microscope. Appl. Phys. Lett. Vol. 62 (1993), p.1110.
DOI: 10.1063/1.108758
Google Scholar
[18]
A.J. Wilkinson, G. Meaden and D.J. Dingley: High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy Vol. 106 (2006), p.307.
DOI: 10.1016/j.ultramic.2005.10.001
Google Scholar
[19]
J. Kacher, C. Landon, B.L. Adams and D. Fullwood: Bragg's law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy Vol. 109 (2009), p.1148.
DOI: 10.1016/j.ultramic.2009.04.007
Google Scholar
[20]
C.D. Landon, B. Adams and J. Kacher: High resolution methods for characterizing mesoscale dislocation structures. J. Eng. Mater. Technol. Vol. 130 (2008), pp.021004-1.
DOI: 10.1115/1.2840961
Google Scholar
[21]
S. Torquato: Effective stiffness tensor of composite media. I. Exact series expansions. J. Mech. Phys. Solids Vol. 45 (1997), p.1421.
DOI: 10.1016/s0022-5096(97)00019-7
Google Scholar
[22]
S. Torquato: Random Heterogeneous Materials. Springer-Verlag, New York (2002).
Google Scholar
[23]
E. Kröner: Statistical modelling. In: J. Gittus and J. Zarka (editors): Modeling Small Deformation in Polycrystals. Elsevier, (1986).
Google Scholar
[24]
D.T. Fullwood, S.R. Kalidindi, B.L. Adams and S. Ahmadi: A discrete Fourier transform framework for localization relations. Computers, Materials and Continua Vol. 299 (2009), p.1.
Google Scholar