EBSD-Based Dislocation Microscopy

Article Preview

Abstract:

Recent advances in high-resolution electron backscatter diffraction (EBSD)-based microscopy are applied to the characterization of incompatibility structures near the grain boundaries (GBs) in polycrystals. The principal interest described here is recovery of geometrically-necessary dislocation (density) tensors, of the 2- and 3-D type, described by Nye and Kröner. These developments are presented in the context of the continuum dislocation theory. High resolution data obtained near a single grain boundary in well-annealed, low content steel suggests that it may be possible to measure the intrinsic elastic properties of GBs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 160)

Pages:

3-10

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. Royal Soc. London A Vol. 241 (1957), p.376.

DOI: 10.1098/rspa.1957.0133

Google Scholar

[2] J.F. Nye: Some geometrical relations in dislocated crystals. Acta Metallurgica Vol. 1 (1953), p.153.

DOI: 10.1016/0001-6160(53)90054-6

Google Scholar

[3] E. Kröner: Continuum theory of dislocations and self-stresses. Ergebnisse der Angewandten Mathematik Vol. 5 (1958), p.1327.

Google Scholar

[4] E. Kröner: Benefits and shortcomings of the continuous theory of dislocations. Int. J. Solids and Struct. Vol. 38 (2001), p.1115.

Google Scholar

[5] C. Teodosiu: Elastic Models of Crystal Defects. Springer-Verlag, Berlin (1982).

Google Scholar

[6] T. Mura: Micromechanics of Defects in Solids. Martinus Nijhoff Publishers, Boston (1987).

Google Scholar

[7] S. Nishikawa and S. Kikuchi: The diffraction of cathode rays by calcite. Proc. Imperial Acad. (Japan) Vol. 4 (1928), p.475.

Google Scholar

[8] M.N. Alam, M. Blackman and D.W. Pashley: High-angle Kikuchi patterns. Proc. Royal Soc. London A Vol. 221 (1954), p.224.

Google Scholar

[9] J.A. Venables and C.J. Harland: Electron back-scattering patterns - A new technique for obtaining crystallographic information in the scanning electron microscope. Phil. Mag. Vol. 27 (1973), p.1193.

DOI: 10.1080/14786437308225827

Google Scholar

[10] B.L. Adams, S.J. Wright and K. Kunze: Orientation imaging: The emergence of a new microscopy. Metallurgical Transactions A (Physical Metallurgy and Materials Science) Vol. 24A (1993), p.819.

DOI: 10.1007/bf02656503

Google Scholar

[11] A.J. Schwartz, M. Kumar and B.L. Adams (editors): Electron Backscatter Diffraction in Materials Science. Kluwer Academic / Plenum Publishers, New York (2000).

DOI: 10.1180/s0026461x00033132

Google Scholar

[12] A.J. Schwartz, M. Kumar, B.L. Adams and D.P. Field (editors): Electron Backscatter Diffraction in Materials Science, 2nd Edition. Springer, New York (2009).

Google Scholar

[13] S. Sun, B.L. Adams and W.E. King: Observations of lattice curvature near the interface of a deformed aluminium bicrystal. Phil. Mag. A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties Vol 80 (2000), p.9.

DOI: 10.1080/014186100250985

Google Scholar

[14] B.S. El-Dasher, B.L. Adams and A.D. Rollett: Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycrystals. Scripta Materialia Vol. 48 (2003), p.141.

DOI: 10.1016/s1359-6462(02)00340-8

Google Scholar

[15] D. Field: Recent advances in the application of orientation imaging. Ultramicroscopy Vol. 67 (1997), p.1.

Google Scholar

[16] J. Kacher and B.L. Adams: Resolution considerations for EBSD-based dislocation density estimates. Scripta Materialia Submitted (2009).

Google Scholar

[17] K.Z. Troost, P. Van der Sluis and D.J. Gravesteijn: Microscale elastic-strain determination by backscatter Kikuchi diffraction in the scanning electron microscope. Appl. Phys. Lett. Vol. 62 (1993), p.1110.

DOI: 10.1063/1.108758

Google Scholar

[18] A.J. Wilkinson, G. Meaden and D.J. Dingley: High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy Vol. 106 (2006), p.307.

DOI: 10.1016/j.ultramic.2005.10.001

Google Scholar

[19] J. Kacher, C. Landon, B.L. Adams and D. Fullwood: Bragg's law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy Vol. 109 (2009), p.1148.

DOI: 10.1016/j.ultramic.2009.04.007

Google Scholar

[20] C.D. Landon, B. Adams and J. Kacher: High resolution methods for characterizing mesoscale dislocation structures. J. Eng. Mater. Technol. Vol. 130 (2008), pp.021004-1.

DOI: 10.1115/1.2840961

Google Scholar

[21] S. Torquato: Effective stiffness tensor of composite media. I. Exact series expansions. J. Mech. Phys. Solids Vol. 45 (1997), p.1421.

DOI: 10.1016/s0022-5096(97)00019-7

Google Scholar

[22] S. Torquato: Random Heterogeneous Materials. Springer-Verlag, New York (2002).

Google Scholar

[23] E. Kröner: Statistical modelling. In: J. Gittus and J. Zarka (editors): Modeling Small Deformation in Polycrystals. Elsevier, (1986).

Google Scholar

[24] D.T. Fullwood, S.R. Kalidindi, B.L. Adams and S. Ahmadi: A discrete Fourier transform framework for localization relations. Computers, Materials and Continua Vol. 299 (2009), p.1.

Google Scholar