Texture Formation during Hot-Deformation of High-Nb Containing γ-TiAl Based Alloys

Article Preview

Abstract:

In this study texture and microstructure formation in high-Nb containing TiAl alloys during lab-scale compression experiments and “near conventional” forging on an industrial scale are investigated. The deformation temperatures range from 700 °C up to temperatures close to the α transus temperature (Tα = 1295 °C). Depending on the deformation conditions, the texture of the tetragonal γ-TiAl phase is formed by pure deformation components, components related to dynamic recrystallization, or transformation components. This changing corresponds with microstructural observations. The hexagonal phases α2-Ti3Al and α-Ti(Al) show a similar texture as it is known for Ti and Ti-base alloys after compressive deformation at elevated temperatures. In contrast to the γ texture, no significant change of the α/α2 texture was observed in the investigated temperature range. In the alloy with a composition of Ti-45Al-10Nb (in at.%) even deformation textures of ternary intermetallic phases, as the hexagonal ωo-Ti4Al3Nb and the cubic βo-TiAl(Nb) phase, respectively, were measured and analyzed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 160)

Pages:

301-306

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Kestler and H. Clemens, in: Titanium and Titanium Alloys, edited by C. Leyens and M. Peters, Wiley-VCH, Weinheim, Germany (2003), p.351.

Google Scholar

[2] F. Appel, M. Oehring, J. D. H. Paul and U. Lorenz, in: Structural Intermetallics 2001, edited by K. Hemker, D. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. Larsen, V. Sikka, M. Thomas and J. Whittenberger, TMS, Warrendale, PA, USA (2001), p.63.

Google Scholar

[3] S. Bystrzanowski, A. Bartels, H. Clemens, R. Gerling, F. -P. Schimansky, G. Dehm and H. Kestler: Intermetallics Vol. 13 (2005), p.515.

DOI: 10.1016/j.intermet.2004.09.001

Google Scholar

[4] R. Gerling, F. -P. Schimansky, A. Stark, A. Bartels, H. Kestler, L. Cha, C. Scheu and H. Clemens: Intermetallics Vol. 16 (2008), p.689.

DOI: 10.1016/j.intermet.2008.02.004

Google Scholar

[5] S. Kremmer, H. F. Chladil, H. Clemens and A. Otto, in: Ti-2007 Science and Technology, edited by M. Niinomi, S. Akiyama, M. Hagiwari, M. Ikeda, K. Maruyama, The Japan Institute of Technology, Japan, (2008), p.989.

Google Scholar

[6] W. Skrotzki, R. Tamm, H. G. Brokmeier, M. Oehring, F. Appel and H. Clemens: Materials Science Forum Vol. 408-412 (2002), p.1777.

DOI: 10.4028/www.scientific.net/msf.408-412.1777

Google Scholar

[7] H. Brokmeier, M. Oehring, U. Lorenz, H. Clemens and F. Appel: Metallurgical and Materials Transactions A Vol. 35 (2004), p.3563.

Google Scholar

[8] A. Stark, A. Bartels, R. Gerling, F. -P. Schimansky and H. Clemens: Advanced Engineering Materials Vol. 8 (2006), p.1087.

Google Scholar

[9] A. Stark, A. Bartels, H. Clemens, S. Kremmer, F. -P. Schimansky and R. Gerling: Advanced Engineering Materials (2009), accepted for print.

Google Scholar

[10] L. Bendersky, W. Boettinger, B. Burton, F. Biancaniello and C. Shoemaker: Acta Metallurgica et Materialia Vol. 38 (1990), p.931.

DOI: 10.1016/0956-7151(90)90165-d

Google Scholar

[11] A. Stark, A. Bartels, H. Clemens and F. -P. Schimansky: Advanced Engineering Materials Vol. 10 (2008), p.929.

Google Scholar

[12] M. Dahms and H. J. Bunge: Journal of Applied Crystallography Vol. 22 (1989), p.439.

Google Scholar

[13] H. Wenk, S. Matthies, J. Donovan and D. Chateigner: Journal of Applied Crystallography Vol. 31 (1998), p.262.

Google Scholar

[14] H. Mecking, C. Hartig and U. Kocks: Acta Materialia Vol. 44 (1996), p.1309.

Google Scholar

[15] W. Schillinger, A. Bartels, R. Gerling, F. -P. Schimansky and H. Clemens: Intermetallics Vol. 14 (2006), p.336.

Google Scholar

[16] A. Bartels and W. Schillinger: Intermetallics Vol. 9 (2001), p.883.

Google Scholar

[17] F. Appel and R. Wagner: Materials Science and Engineering R Vol. 22 (1998), p.187.

Google Scholar

[18] G. Wassermann and J. Grewen: Texturen metallischer Werkstoffe. Springer, Berlin, (1962).

DOI: 10.1007/978-3-662-13128-2

Google Scholar

[19] M. A. Morris and Y. G. Li: in Gamma Titanium Aluminides, edited by Y. -W. Kim, R. Wagner and M. Yamaguchi, TMS, Warrendale, PA, USA (1995), p.353.

Google Scholar