Grain Structure Formation Ahead of Tool during Friction Stir Welding of AZ31 Magnesium Alloy

Article Preview

Abstract:

The “stop-action” technique was employed to study grain structure evolution during friction-stir welding of AZ31 magnesium alloy. The grain structure formation was found to be mainly governed by the combination of the continuous and discontinuous recrystallization but also involved geometric effect of strain and local grain boundary migration. Orientation measurements showed that the deformation mode was very close to the simple shear associated with the rotating pin and material flow arose mainly from basal slip.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 160)

Pages:

313-318

Citation:

Online since:

February 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.P. Reynold: Sci. Tech. Weld. Join. Vol. 5 (2000), p.120.

Google Scholar

[2] K. Colligan: Welding Journal Vol. 78 (1999), p.229.

Google Scholar

[3] S.H.C. Park, Y.S. Sato and H. Kokawa: Scripta Mater. Vol. 49 (2003), p.161.

Google Scholar

[4] B.M. Darras, M.K. Khraisheh, F.K. Abu-Farha and M.A. Omar: J. Mater. Proc. Tech. Vol. 191 (2007), p.77.

Google Scholar

[5] J.A. Esparza, W.C. Davis, E.A. Trillo and L.E. Murr: J. Mater. Sci. Let. Vol. 21 (2002), p.917.

Google Scholar

[6] W. Woo, H. Choo, M.B. Prime, Z. Feng and B. Clausen: Acta Mater. Vol. 56 (2008), p.1701.

Google Scholar

[7] S.H.C. Park, Y.S. Sato and H. Kokawa: J. Mater. Sci. Vol. 38 (2003), p.4379.

Google Scholar

[8] W. Xunhong and W. Kuaishe: Mater. Sci. Eng. A Vol. 431 (2006), p.114.

Google Scholar

[9] Y.N. Wang, C.I. Chang, C.J. Lee, H.K. Lin and J.C. Huang: Scripta Mater. Vol. 55 (2006), p.637.

Google Scholar

[10] S.H.C. Park, Y.S. Sato and H. Kokawa: Metal. Mater. Trans. A Vol. 34A (2003), p.987.

Google Scholar

[11] P.B. Prangnell and C.P. Heason: Acta Mater. Vol. 53 (2005), p.3179.

Google Scholar

[12] E.V. Nesterova and V.V. Rybin: Phys. Metals Metallogr. Vol. 59 (1985), p.395.

Google Scholar

[13] D. Ponge and G. Gottstein: Acta Mater. Vol. 46 (1998), p.69.

Google Scholar

[14] J.A. del Valle and O.A. Ruano: Mater. Sci. Eng. A Vol. 487 (2008), p.473.

Google Scholar

[15] O. Sitdikov and R. Kaibyshev: Mater. Trans. Vol. 42 (2001), p. (1928).

Google Scholar

[16] S.M.F. Varzaneh, A.Z. Hanzaki and H. Beladi: Mater. Sci. Eng. A Vol. 456 (2007), p.52.

Google Scholar

[17] J.C. Tan and M.J. Tan: Mater. Sci. Eng. A Vol. 339 (2003), p.124.

Google Scholar

[18] A. Galiyev, R. Kaibyshev and G. Gottstein: Acta Mater. Vol. 49 (2001), p.1199.

Google Scholar

[19] S.E. Ion, F.J. Humphreys and S.H. White: Acta Metall. Vol. 30 (1982), p. (1909).

Google Scholar

[20] B. Beausir, L.S. Tóth and K.W. Neale: Acta. Mater. Vol. 55 (2007), p.2695.

Google Scholar