Verification of Vibration Power Generator Model for Prediction of Harvested Power

Article Preview

Abstract:

This paper deals with modeling of a vibrational power generator and verification of a complex generator model for prediction of harvested power. The power generator is an electromagnetic device, which uses ambient energy of mechanical vibrations for generating useful electrical energy. This energy harvesting device constitutes a complex mechatronic system consisting of a resonance mechanism, electromechanical converter, power management (electronics and energy storage) and a powered device. When this system is placed in environment with sufficient mechanical vibration, the generator harvests energy and it can be used as autonomous source of electrical energy for powering of wireless sensors in remote applications. The verified simulation model of this device can provide a prediction of possible harvested power without any physical position of this device in a vibratory environment (only acceleration measurement is used as input).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 164)

Pages:

291-296

Citation:

Online since:

June 2010

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2010 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Priya S., Inman D.J.: Energy Harvesting Technologie, Springer US (2009).

Google Scholar

[2] Roundy S., et al.: Energy Scavenging in Support of Ambient Intelligence: Techniques, Challenges, and Future Directions. In: Mukherjee S, et al.: AmIware Hardware Technology Drivers of Ambient Intelligence, Philips Research Book, Series Vol. 5, Springer Netherlands (2006).

DOI: 10.1007/1-4020-4198-5_14

Google Scholar

[3] Beeby S. P., Tudor, M. J. and White, N. M.: Energy harvesting vibration sources for microsystems applications, Measurement Science and Technology, 17 (12). (2006), pp.175-195.

DOI: 10.1088/0957-0233/17/12/r01

Google Scholar

[4] Williams C.B., Yates R.B.: Analysis of a micro-electric generator for Microsystems, Sensors and Actuators, A52(1), (1996), pp.8-11.

Google Scholar

[5] Hadas Z., Zouhar J., Singule V., Ondrusek C.: Design of Energy Harvesting Generator Base on Rapid Prototyping Part,. IEEE 13th Power Electronics and Motion Control Conference. Poznan, Poland. (2008). pp.1688-1692.

DOI: 10.1109/epepemc.2008.4635506

Google Scholar

[6] Hadas Z.; Singule V.; Ondrusek C.: Optimal Design of Vibration Power Generator for Low Frequency, Solid State Phenomena, Vols. 147-149, (2009) pp.426-431.

DOI: 10.4028/www.scientific.net/ssp.147-149.426

Google Scholar

[7] Hadas Z., Singule V., Ondrusek C., Kluge M.: Simulation of Vibration Power Generator, Recent Advances in Mechatronics, Springer Berlin Heidelberg, (2007), pp.350-354.

DOI: 10.1007/978-3-540-73956-2_69

Google Scholar

[8] Olsson H., Åström K.J., Canudas de Wit C., Gafvert M. and Lischinsky P.: Friction models and friction compensation. European Journal of Control, Vol. 4, No. 3 (1998), pp.176-195.

DOI: 10.1016/s0947-3580(98)70113-x

Google Scholar

[9] Armstrong B.: Friction: Experimental determination, modeling, and compensation. Proceedings of IEEE International Conference on Robotics and Automation, 3, (1988), pp.1422-1427.

DOI: 10.1109/robot.1988.12266

Google Scholar

[10] Hadas Z., Ondrusek C., Singule V., Kluge M.: Vibration Power Generator for Aeronautics Applications, European Society for Precision Engineering and Nanotechnology 10th Anniversary International Conference in Zurich, Switzerland, Volume I (2008).

Google Scholar

[11] Paradiso J.A., Starner T.: Energy Scavenging for Mobile and Wireless Electronics, IEEE Pervasive Computing, Vol. 4, No. 1, (2005), pp.18-27.

DOI: 10.1109/mprv.2005.9

Google Scholar