Room Temperature Ferromagnetism and its "Switch" Behaviour in some Dilute Magnetic Oxides: an Electronic Structure and Magnetization Study

Article Preview

Abstract:

ZnO doped with a few per cent of magnetic ions such as Ni, Fe, Co exhibits room temperature ferromagnetism (RTFM), transforming it into a very promising candidate for future spintronic applications. Two samples i.e. ZnO doped with Ni and Cr (5% each) have been investigated in the present work. The samples were characterized by Rietveld refinement of X-ray diffraction (XRD) patterns and the superconducting quantum interference device (SQUID) magnetometry. Rietveld analysis confirms that both the polycrystalline samples possess wurtzite structure with no evidence of any secondary phase. The SQUID measurements exhibit a diamagnetic state for the pristine ZnO and a paramagnetic state for the as-synthesized (Cr and Ni)-doped ZnO samples. However, the post annealing in H2 and vacuum drive them to a remarkable ferromagnetic state at room temperature. No element specific signature for ferromagnetism was seen. Then the X-ray photoelectron spectroscopic (XPS) measurements were performed to investigate their electronic structure and exploring the origin of ferromagnetism in these diluted magnetic semiconductor materials. The XPS results confirm the creation of oxygen vacancies upon Hydrogen/ vacuum annealing, owned to the (Ni/Cr) 3d¬−O 2p hybridization. The findings suggest oxygen vacancies as the intrinsic origin for ferromagnetism in doped ZnO. The important feature of this work is that the ferromagnetism and the consequent electronic property changes are found to be reversible with regard to re-heating the samples in air, showing a switch “on” and “off” ferromagnetic ordering in the ZnO matrix.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 171)

Pages:

19-38

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova,  and D. M. Treger: Science Vol 294 (2001), p.1488.

DOI: 10.1126/science.1065389

Google Scholar

[2] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura M. kawasaki, P. Ahmet, T. Chikyow, S. -Y. Koshihara and H. Koinuma: Science Vol. 291 (2001), p.854.

DOI: 10.1126/science.1056186

Google Scholar

[3] P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M. Osorio, G.B. Johansson, G.A. Gehring: Nature Mater. Vol. 2 (2003), p.673.

Google Scholar

[4] J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. LeClair, T. S. Santos, J. S. Moodera: Nature Mater. Vol. 5 (2006), p.298.

DOI: 10.1038/nmat1613

Google Scholar

[5] K. Sato and H. Katayama-Yoshida: Jpn. J. Appl. Phys. Part 2 Vol. 39 (2000), p. L555.

Google Scholar

[6] T Fukumura, H Toyosaki, K Ueno, M Nakano and M Kawasaki: New J. Phys. Vol. 10 (2008), p.055018.

Google Scholar

[7] H. Ohno: Science Vol. 281 (1998), p.951.

Google Scholar

[8] G.A. Prinz: Science Vol. 282 (1998), p.1660.

Google Scholar

[9] J. M. Kikkawa, I. P. Smorchkova, N. Samarth and D.D. Awschalom: Science Vol. 277 (1997), p.1284.

Google Scholar

[10] T. Dielt, H. Ohno, F. Matsukura, J. Cibert and D. Ferrand: Science Vol. 287 (2000), p.1019.

Google Scholar

[11] A. Dinia, G. Schmerber, C. Meny, V. Pierron-Bohnes, E. Beaurepaire: J. Appl. Phys. Vol. 97 (2005), p.123908.

DOI: 10.1063/1.1937478

Google Scholar

[12] A. Dinia, G. Schmerber, V. Pierron-Bohnes, C. Meny, P. Panissod, E. Beaurepaire: J. Magn. Magn. Mater. Vol. 286 (2005), p.37.

DOI: 10.1016/j.jmmm.2004.09.032

Google Scholar

[13] S. Colis, H. Bieber, S. Begin-Colin, G. Schmerber, C. Leuvrey, A. Dinia: Chem. Phys. Lett. X, Vol. 422 (2005), p.529.

Google Scholar

[14] M. Bouloudenine, N. Viart, S. Colis, A. Dinia: Chem. Phys. Lett., Vol. 397 (2004), p.73.

Google Scholar

[15] M. Bouloudenine, N. Viart, S. Colis, A. Dinia: Catal. Today, Vol. 113 (2006) p.240.

DOI: 10.1016/j.cattod.2005.11.073

Google Scholar

[16] Y. Belghazi, G. Schmerber, S. Colis, J.L. Rehspringer, A. Berrada, A. Dinia: Appl. Phys. Lett., Vol. 89 (2006), p.122504.

DOI: 10.1063/1.2355462

Google Scholar

[17] Y. Belghazi, G. Schmerber, S. Colis, J.L. Rehspringer, A. Berrada, A. Dinia: J. Magn. Magn. Mater., Vol. 310 (2007), p. (2092).

DOI: 10.1016/j.jmmm.2006.10.1138

Google Scholar

[18] J. Alaria, M. Bouloudenine, G. Schmerber, S. Colis, A. Dinia, P. Turek, M. Bernard: J. Appl. Phys., Vol. 99 (2006), p. 08M118.

DOI: 10.1063/1.2172887

Google Scholar

[19] K. Ueda, H. Tabata and T. Kawai: Appl. Phys. Lett. Vol. 79 (2001), p.988.

Google Scholar

[20] J.M.D. Coey and K. Rode, in: Dilute Magnetic Oxides and Nitrides ed. H Kronmuller and S Parkin (Chichester: Wiley, 2007), p.2107.

Google Scholar

[21] S.J. Pearton, C.R. Abernathy M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard and Y.D. Park: J. Appl. Phys. Vol. 93 (2003), p.1.

Google Scholar

[22] S.J. Pearton, C.R. Abernathy M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard and Y.D. Park, in: Defects and Diffusion in Semiconductors—An Annual Retrospective VII 230–2, 2004), p.17–45.

Google Scholar

[23] Z.B. Gu, C.S. Yuan, M. H Lu, J. Wang, D. Wu, S.T. Zhang, S.N. Zhu, Y.Y. Zhu and Y.F. Chen: J. Appl. Phys. Vol. 98 (2005), p.053908.

Google Scholar

[24] J. Wang, Z. Gu, M. Lu, D. Wu, C. Yuang, S. Zhang, Y. Chen, S. Zhu and Y. Zhu: Appl. Phys. Lett. Vol. 88 (2006), p.252110.

Google Scholar

[25] Q. Xu, L. Hartmann, H. Schmidt, H. Hochmuth, M. Lorenz, D. Spemann and M. Grundmann: Phys. Rev. B Vol. 76 (2007), p.134417.

Google Scholar

[26] K. Sato and H. Katayama-Yoshida: Hyperfine Interact. Vol. 136 (2001), p.737.

Google Scholar

[27] K. Sato and H. Katayama-Yoshida: Phys. Status Solidi b Vol. 229 (2002), p.673.

Google Scholar

[28] M. Berciu and R.N. Bhatt: Phys. Rev. Lett. Vol. 87 (2001), p.107203.

Google Scholar

[29] D.E. Angelescu and R.N. Bhatt: Phys. Rev. B Vol. 65 (2002), p.075211.

Google Scholar

[30] A. Kaminski and S. Das Sarma: Phys. Rev. Lett. Vol. 88 (2002), p.247202.

Google Scholar

[31] T. Zhang, L.X. Song, Z.Z. Chen, E.W. Shi, L.X. Chao and H.W. Zhang: Appl. Phys. Lett. Vol. 89 (2006), p.172502.

Google Scholar

[32] L.M. Sandratskii and P. Bruno: Phys. Rev. B Vol. 73 (2006), p.045203.

Google Scholar

[33] A.B. Mahmoud, H.J. von Bardeleben, J.L. Cantin, E. Chikoidze, Y. Dumont and A. Mauger: J. Appl. Phys. Vol. 101 (2006), p. 09H102.

Google Scholar

[34] T. Jungwirth, S. Sinova and J. Masek: Rev. Mod. Phys. Vol. 78 (2006), p.809.

Google Scholar

[35] F. Matsukura and H. Ohno, in: Ferromagnetic Semiconductors ed H Kronmuller and S Parkin (Chichester: Wiley, 2006), p.2756.

Google Scholar

[36] T. Dietl, in: Diluted Ferromagnetic Semiconductors—Theoretical Aspects ed H Kronmuller and S Parkin (Chichester: Wiley, 2007), p.2774.

Google Scholar

[37] C.H. Patterson: Phys. Rev. B Vol. 74 (2006), p.144432.

Google Scholar

[38] G.S. Chang, E.Z. Kurmaev, D.W. Boukhvalov, L.D. Finkelstein, S. Colis, T.M. Pedersen, A. Moewes and A. Dinia: Phys. Rev. B Vol. 75 (2007), p.195215.

DOI: 10.1103/physrevb.75.195215

Google Scholar

[39] P. Gopal and N.A. Spaldin: Phys. Rev. B Vol. 74 (2006), p.094418.

Google Scholar

[40] J.M.D. Coey: J. Appl. Phys Vol. 97 (2005), p. 10D313.

Google Scholar

[41] J.M.D. Coey, M. Venkatesan and C.B. Fitzgerald: Nat. Mater. Vol. 4 (2005), p.173.

Google Scholar

[42] M. Venkatesan, C.B. Fitzgerald, J.G. Lunney and J.M.D. Coey: Phys. Rev. Lett. Vol. 93 (2004), p.177206.

Google Scholar

[43] D. Chakraborti, G. Trichy, J. Narayan, J.T. Prater and D. Kumar: J. Appl. Phys. Vol. 102 (2007), p.113908.

Google Scholar

[44] K.R. Kittilstved, D.A. Schwartz, A.C. Tuan, S.M. Heald, S.A. Chambers and D.R. Gamelin: Phys. Rev. Lett. Vol. 97 (2006), p.037203.

Google Scholar

[45] D.A. Schwartz and D.R. Gamelin: Adv. Mater. Vol. 16 (2004), p.2115.

Google Scholar

[46] T. Zhu, W.S. Zhan, W.G. Wang and J.Q. Xiao: Appl. Phys. Lett. Vol. 89 (2006), p.022508.

Google Scholar

[47] S.H. Liu, H.S. Hsu, C.R. Lin, C.S. Lue and J.C.A. Huang: Appl. Phys. Lett, Vol. 90 (2007), p.222505.

Google Scholar

[48] R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, T. Shripathi, U.P. Deshpande, E Saitovitch: J. Magn. Magn. Mater. Vol. 322 (2010), p.2187.

DOI: 10.1016/j.jmmm.2014.04.072

Google Scholar

[49] R.K. Singhal, Arvind Samariya, Sudhish Kumar, Y.T. Xing, E. Saitovitch: Mat. Lett. Vol. 64 (2010), p.1846.

Google Scholar

[50] R.K. Singhal, S.C. Sharma, P. Kumari, S. Kumar, Y.T. Xing, U.P. Deshpande, T. Shripathi, E. Saitovitch: J. Appl. Phys. Vol. 109 (6) (2011) p.063907.

Google Scholar

[51] R. K. Singhal, S. Kumar, P. Kumari, Y. T. Xing, E. Saitovitch: Appl. Phys. Lett. Vol. 98 (2011), p.092510.

Google Scholar

[52] R.K. Singhal, Sudhish Kumar, Y.T. Xing, U.P. Deshpande, T. Shripathi, S.N. Dolia, E. Saitovitch: Mat. Lett. Vol. 65 (2011), p.1485.

DOI: 10.1016/j.matlet.2011.02.048

Google Scholar

[53] R.K. Singhal, A. Samariya, S. Kumar, S.C. Sharma, Y.T. Xing, U.P. Deshpande, T. Shripathi, E. Saitovitch: Appl. Surf. Sci. 257 (2010), p.1053.

DOI: 10.1016/j.apsusc.2010.07.106

Google Scholar

[54] K.P. Bhatti, S. Chaudhary, D.K. Pandya and S.C. Kashyap: J. Appl. Phys. Vol. 101 (2007), p.033902.

Google Scholar

[55] K. Rode, A. Anane, R. Mattana, J.P. Contour, O. Durand and R. LeBorgeois: J. Appl. Phys. Vol. 93 (2003), p.7676.

Google Scholar

[56] K.P. Bhatti, S. Chaudhary, D.K. Pandya and S.C. Kashyap; J. Appl. Phys. Vol. 101 (2007), p.103919.

Google Scholar

[57] M. Gacic, G. Jakob, C. Herbort, H. Adrian, T. Tietze, S. Brueck and E. Goering: Phys. Rev. B Vol. 75 (2007), p.205206.

DOI: 10.1103/physrevb.75.205206

Google Scholar

[58] A. Barla, G. Schmerber, E. Beaurepaire, A. Dinia, H. Bieber, S. Colis, F. Scheurer, J.P. Kappler,  P. Imperia, F. Nolting, F. Wilhelm, A. Rogalev, D. Müller and J. J. Grob: Phys. Rev. B Vol. 76 (2007), p.125201.

DOI: 10.1103/physrevb.76.125201

Google Scholar

[59] P. Thakur, K.H. Chae, J.Y. Kim, M. Subramanian, R. Jayavel and K. Asokan: Appl. Phys. Lett. Vol. 91 (2007), p.162503.

DOI: 10.1063/1.2794764

Google Scholar

[60] S. Krishnamurthy, C. McGuiness, L.S. Dornneles, M. Venkatesan, J.M.D. Coey, K.E. Smith, T. Learnmonth, P.A. Glans, T. Schmitt and J.H. Guo: J. Appl. Phys. Vol. 99 (2006), p. 08M111.

Google Scholar

[61] M. Kobayashi et al.: Phys. Rev. B Vol. 72 (2005), p.201201.

Google Scholar

[62] H.J. Lee, S.Y. Jeong, C.R. Cho and C. H Park: Appl. Phys. Lett. Vol. 81 (2002), p.4020.

Google Scholar

[63] H.W. Zhang, E.W. Shi, Z.Z. Chen, X.C. Liu and B. Xiao: Japan. J. Appl. Phys. Vol. 45 (2006), p.7688.

Google Scholar

[64] P. Sati, R. Hayn, R. Kuzian, S. Regnier, S. Schäfer, A. Stepanov, C. Morhain, C. Deparis, M. Laügt, M. Goiranand and Z. Golacki: Phys. Rev. Lett. Vol. 96 (2006), p.017203.

DOI: 10.1103/physrevlett.96.017203

Google Scholar

[65] G. Martinez-Criado, A. Segura, J.A. Sans, A. Homs, J. Pellicer-Porres and J. Susini: Appl. Phys. Lett. Vol. 89 (2006), p.061906.

DOI: 10.1063/1.2335597

Google Scholar

[66] J.H. Guo et al.: J. Phys.: Condens. Matter Vol. 19 (2007), p.172202.

Google Scholar

[67] C. Song, F. Zeng, K.W. Geng, X.B. Wang,Y. X. Shen and F. Pan: J. Magn. Magn. Mater. Vol. 309 (2007), p.25.

Google Scholar

[68] X.C. Liu, E.W. Shi, Z.Z. Chen, H.W. Zhang, L.X. Song, J. Wang and S.D. Yao: J. Cryst. Growth Vol. 296 (2006), p.135.

Google Scholar

[69] N.H. Hong, J. Sakai and V. Brize: J. Phys.: Condens. Matter Vol. 19 (2007), p.036219.

Google Scholar

[70] S. Banerjee, M. Mandal, N. Gayathri and M. Sardar: Appl. Phys. Lett. Vol. 91 (2007), p.182501.

Google Scholar

[71] J.M.D. Coey, Solid State Sci. Vol. 7 (2005 ), p.660.

Google Scholar

[72] H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, J.Y. Lin, Y.P. Feng, J. Ding, L.H. Van and J.H. Yin: Phys. Rev. Lett. Vol. 99 (2007), p.127201.

Google Scholar

[73] J.M.D. Coey, M. Vankatesan, C.B. Fitzgerald, L.S. Dornneles, P. Stamenov and J.G. Luney: J. Magn. Magn. Mater. Vol. 290–1 (2005), p.1405.

Google Scholar

[74] D. Chakraborti, G. Trichy, J.T. Prater and J. Narayan: J. Phys. D: Appl. Phys. Vol. 40 (2007), p.7606.

Google Scholar

[75] D.P. Norton, S.J. Pearton, A.F. Hebard, N. Theodoropoulou, l.A. Boatner, R.G. Wilson: Appl. Phys. Lett. Vol. 82, (2003), p.239.

DOI: 10.1063/1.1537457

Google Scholar

[76] J.J. Wu, S.C. Liu, M.H. Yang; Appl. Phys. Lett. Vol. 85, (2004), p.1027.

Google Scholar

[77] R. K Singhal, M. Dhawan, S. K Gaur, S.N. Dolia, S. Kumar, T. Shripathi, U.P. Deshpande, Y. T. Xing, E. Saitovitch, K.B. Garg: J. Alloys Compds. Vol. 477, (2009), p.379.

DOI: 10.1016/j.jallcom.2008.10.005

Google Scholar

[78] R.K. Singhal, A. Samariya, Y.T. Xing, S. Kumar, S.N. Dolia, T. Shripathi, U.P. Deshpande, E. Saitovitch ; J. Alloys Compds. Vol. 496 (2010), p.324.

DOI: 10.1016/j.jallcom.2010.02.005

Google Scholar

[79] X.M. Cheng, C.L. Chien; J. Appl. Phys. Vol. 93 (2003), p.7876.

Google Scholar

[80] D.C. Kundaliya, S.B. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, S.R. Shinde, Z. Ma, B. Varughese: Nat. Mater. Vol. 3 (2004), p.709.

DOI: 10.1038/nmat1221

Google Scholar

[81] J.H. Kim, H. Kim, D. Kim, S.G. Yoon, W.K. Choo, Sol. St. Commun. Vol. 131 (2004), p.677.

Google Scholar

[82] J.H. Kim, H. Kim, D. Kim, Y.E. Ihm, W.K. Choo: J. Appl. Phys. Vol. 92 (2002), p.6066.

Google Scholar

[83] J.H. Park, M.G. Kim, H.M. Jang, S. Ryu, Y.M. Kim: Appl. Phys. Lett. Vol. 84 (2004), p.1338.

Google Scholar

[84] R. K. Singhal, A. Samariya, S. Kumar, Y. T. Xing, D. C. Jain, S. N. Dolia, U. P. Deshpande, T. Shripathi, E. Saitovitch ; J. Appl. Phys. Vol. 107 (2010), p.113916.

DOI: 10.1063/1.3431396

Google Scholar

[85] T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, T. Ito, Physica E Vol. 10 (2001), p.260.

Google Scholar

[86] F. Bødker, M.F. Hansen, C. Bender Koch, S. Mørup: J. Magn. Magn. Mater. Vol. 221 (2000), p.32.

Google Scholar

[87] P.V. Radovanovic, D.R. Gamelin; Phys. Rev. Lett. Vol. 91 (2003), p.157201.

Google Scholar

[88] D.A. Schwartz, K.R. Kittilstved, D.R. Gamelin; Appl. Phys. Lett. Vol. 85 (2004), p.1395.

Google Scholar

[89] Z. Jin, T. Fukumura, M. Kawasaki, K. Ando, H. Saito, T. Sekiguchi, Y.Z. Yoo, M. Murakami, Y. Matsumoto, T. Hasegawa, H. Koinuma: Appl. Phys. Lett. Vol. 78 (2001), p.3824.

DOI: 10.1063/1.1377856

Google Scholar

[90] B. Pandey, S. Ghosh, P. Srivastava, D.K. Avasthi, D. Kabiraj, J.C. Pivin; J. Magn. Magn. Mater. Vol. 320, (2008), p.3347.

Google Scholar

[91] Xingyu Mao, Wei Zhong, Youwei Du; J. Magn. Magn. Mater. Vol. 320 (2008), p.1102.

Google Scholar

[92] M. El-Hilo, A. A. Dakhel, A.Y. Ali-Mohamed; J. Magn. Magn. Mater. Vol. 321 (2009), p.2279.

Google Scholar

[93] B.K. Roberts, A.B. Pakhomov, V.S. Shutthanandan, K.M. Krishnan: J. Appl. Phys. Vol. 97 (2005), p. 10D310.

Google Scholar

[94] P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring: Nat. Mater. Vol. 2 (2003), p.673.

Google Scholar

[95] H. Wang, H.B. Wang, F.J. Yang, Y. Chen, C. Zhang, C.P. Yang, Q. Li and, S.P. Wong: Nanotechnology Vol. 17 (2006), p.4312.

Google Scholar

[96] B. Wang, J. Iqbal, X. Shan, G. Huang, H. Fu, R. Yu, D. Yu: Mater. Chem. Phys. Vol. 113 (2009), p.103.

Google Scholar

[97] L.J. Zhuge, X.M. Wu, Z.F. Wu, X.M. Chen, Y.D. Meng: Scr. Mater. Vol. 60 (2009), p.214.

Google Scholar

[98] S. Singh, E.S. Kumar, M.S.R. Rao: Scr. Mater. Vol. 58 (2008) p.866.

Google Scholar

[99] S. Pokhrel, B. Jeyaraj, K.S. Nagaraja: Mater. Lett. Vol. 57 (2003), p.3543.

Google Scholar

[100] J. Rodriguez-Carvajal, in: FULLPROF version 3. 0. 0. Laboratorie Leon Brillouin (CEA-CNRS, France) (2003).

Google Scholar

[101] X. Huang, G. Li, L. Duan, L. Li, X. Dou, L. Zhan: Scripta Materialia Vol. 60 (2009), p.984.

Google Scholar

[102] R. K. Singhal, P. Kumari, A. Samariya, S. Kumar, S.C. Sharma, Y. T. Xing, E. Saitovitch: Appl. Phys. Lett. Vol. 97 (2010), p.172503.

DOI: 10.1063/1.3507290

Google Scholar

[103] R.K. Singhal, A. Samariya, S. Kumar, Y. Xing, U.P. Deshpande, T. Shripathi, E. Saitovitch: Sol. St. Commun. Vol. 150 (2010), p.1154.

Google Scholar

[104] A. Samariya, R. K. Singhal, S. Kumar, Y. T. Xing, D. C. Jain, S. N. Dolia, U. P. Deshpande, T. Shripathi, Elisa Saitovitch: Mater. Chem. Phys. Vol. 123 (2010), p.678.

DOI: 10.1016/j.matchemphys.2010.12.062

Google Scholar

[105] A. Samariya, R.K. Singhal, S. Kumar, Y.T. Xing, S. Sharma, P. Kumari, D.C. Jain, S. Dolia U.P. Deshpande, T. Shripathi, E. Saitovitch: Appl. Surf. Sc. Vol. 257 (2010), p.585.

DOI: 10.1016/j.apsusc.2014.03.001

Google Scholar

[106] R. K. Singhal, A. Samariya, S Kumar, Y Xing, U Deshpande, T Shripathi, S N Dolia, E. Saitovitch: Phys. Status Solidi (A) Vol. 207 (2010), p.2373.

DOI: 10.1002/pssa.200925637

Google Scholar

[107] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, in: Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer, Eden Prairie, (1979) p.81.

Google Scholar

[108] ] G.H. Yu, L.R. Zeng, F.W. Zhu, C.L. Chai, W.Y. Lai: J. Appl. Phys. Vol. 90, (2001), p.4039.

Google Scholar

[109] Z. Yin, N. Chen, F. Yang, S. Song, C. Chai, J. Zhong, H. Qian, K. Ibrahim: Sol. St. Commun. Vol. 135 (2005), p.430.

Google Scholar

[110] K.S. Kim, R.E. Davis: J. Electron, Spectrosc. Relat. Phenom. Vol. 1, (1972/1973), p.251.

Google Scholar

[111] S. Hufner, G.K. Wertheim: Phys. Rev. B Vol. 8 (1973), p.4857.

Google Scholar

[112] H.A. Weakliem: J. Chem. Phys., Vol. 36, (1962), p.2117.

Google Scholar

[113] K.R. Kittilstved, W.K. Liu, D.R. Gamelin: Nature Mater., Vol. 5 (2006), p.291.

Google Scholar

[114] S.B. Zhang, S.H. Wei, A. Zunger: Phys. Rev. B Vol. 63 (2001), p.075205.

Google Scholar

[115] Y. Ichiyanagi, N. Wakabayashi, J. Yamazaki, S. Yamada, Y. Kimishima, E. Komatsu, H. Tajima: Physica B Vol. 329 (2003), p.862.

Google Scholar

[116] S. Ghosh, P. Srivastava, B. Pandey, M. Saurav, P. Bharadwaj, D.K. Avasthi, D. Kabiraj, S.M. ShivaPrasad: Appl. Phys. A Vol. 90 (2008), p.765.

DOI: 10.1007/s00339-007-4353-6

Google Scholar

[117] S. Singh, N. Rama, M.S. Ramachandra Rao, Appl. Phys. Lett. Vol. 88 (2006), p.222111.

Google Scholar

[118] T. Dietl: Semicond. Sci. Technol. Vol. 17 (2002), p.377.

Google Scholar

[119] K. Sato, H. Katayama-Yoshida: Jpn. J. Appl. Phys. Vol. 40 (2001), p. L334.

Google Scholar

[120] C.J. Cong, J.H. Hong, Q.Y. Liu, L. Liao, K.L. Zhang: Sol. St. Commun. Vol. 138 (2006), p.511.

Google Scholar

[121] D.A. Schwartz, K.R. Kittilstved, D.R. Gamelin: Appl. Phys. Lett. Vol. 85, (2004), p.1395.

Google Scholar

[122] R.K. Singhal: Appl. Surf. Sci.: Vol. 257 (2010), p.1808.

Google Scholar

[123] C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, J.E. Muilenberg, in: Handbook of X- Ray Photoelectron Spectroscopy, Perkin Elmer, Eden Prairie, 1979, p.80–84.

Google Scholar

[124] B. Wang, J. Iqbal, X. Shan, G. Huang, H. Fu, R. Yu, D. Yu: Mater. Chem. Phys. Vol. 113 (2009), p.103.

Google Scholar

[125] A.B. Gaspar C.A. C Perez, L.C. Dieguez: Appl. Surf. Sci., Vol. 252 (2005), p.939.

Google Scholar

[126] Y. Liu, J. Yang, Q. Guan, L. Yang, H. Liu and Y. Zhang: Appl. Surf. Sci., Vol. 256 (2010), p.3559.

Google Scholar

[127] P.M. Krstajic, F.M. Peeters, V.A. Ivanov, V. Fleurov and K. Kikoin: Phys. Rev. B, Vol. 70 (2004), p.195215.

Google Scholar

[128] G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong and Z. Zhang: Adv. Mater. Vol. 20 (2008), p.3521.

Google Scholar

[129] G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu and Z.X. Shen: Phys. Rev. B Vol. 79 (2009), p.174406.

Google Scholar

[130] L. J Zhuge, X. M . Wu, Z.F. Wu, X.M. Chen and Y.D. Meng: Scripta Mater. Vol. 60 (2009) p.214.

Google Scholar

[131] N.H. Hong, J. Sakai, N.T. Huong, N. Poirot and A. Ruyter: Phys. Rev. B Vol. 72 (2005), p.045336.

Google Scholar