Corrosion and Oxidation Behavior of Ti-Based Amorphous and Nanocrystalline Alloys

Article Preview

Abstract:

Amorphous alloys, in general, exhibit superior mechanical and chemical properties as compared to their crystalline counterparts, which is attributed to their chemical homogeneity and to the absence of crystal-like structural defects. Nanocrystalline and fully crystallized forms of these alloys can be easily obtained by a suitable thermal annealing treatment. It is important to have the knowledge of corrosion/oxidation behavior of amorphous and nanocrystalline alloys for various possible applications. In contrast to many investigations on corrosion and oxidation behavior of amorphous alloys reported in the literature, only limited studies have been carried out on comparison of corrosion/oxidation behavior of amorphous and nanocrystalline states of the same alloy. With this motivation potentiodynamic polarization studies were carried out on amorphous and nanocrystalline states of the alloy Ti60Ni40 in several aqueous media at room temperature. The oxidation in air was also investigated in the temperature range 2800C-3800C using a thermogravimetric analyzer. It was found from these investigations that nanocrystalline state exhibits the maximum corrosion/oxidation resistance in comparison to amorphous and crystalline states. The better corrosion/oxidation resistance of nanocrystalline state can be explained in terms of the nature of the nanocrystalline phase/phases and the size of the crystallites. The results of the present study are supported by other similar studies reported in the literature. A short review on comparison of corrosion/oxidation behaviour of amorphous and nanocrystalline Ti-based alloy is also presented in the paper.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 171)

Pages:

51-66

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Klement, R. H. Wilnes and P. Duwez: Nature Vol. 187 (1960), p.869.

Google Scholar

[2] A. Peker and W.L. Johnson: Appl. Phys. Lett. Vol. 63 (1993), p.2341.

Google Scholar

[3] W. H. Wang, C. Dong, C. H. Shek: Mater. Sci. and Eng. R Vol. 44 (2004), p.45.

Google Scholar

[4] A. Inoue: Acta Mater. Vol. 48 (2000), p.279.

Google Scholar

[5] A. Inoue, Y. Shinohara and J. S. Gook: Mater. Trans. JIM Vol. 36 (1995), p.1427.

Google Scholar

[6] X. M. Wang, I. Yoshii, A. Inoue, Y. H. Kim and I. B. Kim: Mater. Trans. JIM Vol. 40 (1999), p.1130.

Google Scholar

[7] A. Inoue, K. Matsuki and T. Masumoto: Mater. Trans. JIM Vol. 31 (1990), p.148.

Google Scholar

[8] A. Inoue, K. Ohetera, K. Kita and T. Masumoto: Japan. J. Appl. Phys. Vol. 27 (1988), p.2248.

Google Scholar

[9] T. Zhang and A. Inoue: Mater Trans. JIM Vol. 39 (1998), p.1001.

Google Scholar

[10] A. Inoue, N. Nishiyama, K. Amiya, T. Zhang and T. Masumoto: Materials Letters Vol. 14 (2007), p.2851.

Google Scholar

[11] A. Dhawan, K. Raetzke, F. Faupel and S. K. Sharma: Phys. Stat. Sol. (a) Vol. 199, No. 3 (2003), p.431.

Google Scholar

[12] A. Dhawan, K. Raetzke, F. Faupel and S. K. Sharma: Bull. of Mater. Sci. Vol. 24 (2001), p.281.

Google Scholar

[13] F. Faupel, W. Frank, M. –P. Macht, H. Mehrer, V. Naundorf, K. Raetzke, H. Schober, S. K. Sharma and H. Teichler: Reviews of Modern Physics Vol. 75 (2003), p.237.

DOI: 10.1103/revmodphys.75.237

Google Scholar

[14] J. -J. Oak and A. Inoue: Mater. Sci. and Engg. A Vol. 449 (2007), p.220.

Google Scholar

[15] F. E. Luborosky: Amorphous Metallic Alloys, (Butterworths, London 1983).

Google Scholar

[16] S. Scudino, K. B. Surreddi, S. Sager, M. Sakaliyska, J. S. Kim, W. Löser and J. Eckert: Journal of Material Science Vol. 43 (2008), p.4518.

DOI: 10.1007/s10853-008-2647-5

Google Scholar

[17] Y. He, G. J. Shiflet and S. J. Poon: Journal of Alloys and Compounds Vol. 207 (2003), p.349.

Google Scholar

[18] A. Inoue, T. Masumoto, C. Suryanarayana and A. Hoshi: J. Phys. Vol. 41 (1980), p.758.

Google Scholar

[19] G. Duan, A. Wiest, M.L. Lind, A. Kahl and W.L. Johnson: Scripta Mater. Vol. 28 (2008), p.465.

Google Scholar

[20] C. L. Ma, S. Ishihara, H. Soejima, N. Nishiyama and A. Inoue: Mater. Trans. JIM Vol. 45 (2004), p.1802.

Google Scholar

[21] Y. C. Kim, W.T. Kim and D.H. Kim: Mater. Sci. Engg. A Vol. 375 (2004), p.127.

Google Scholar

[22] M. L. Morrison, R. A. Buschrnan, A. Peker, P. K. Liaw and J. A. Hoston: Journal of Non Crystalline Solids Vol. 353 (2007), p.2115.

Google Scholar

[23] D. E. Polk, A. Calka and B.C. Giessen: Acta Metall. Vol. 26 (1978), p.1097.

Google Scholar

[24] T. Zhang, A. Inoue and T. Masumoto: Mater. Lett. Vol. 15 (1993), p.379.

Google Scholar

[25] T. Zhang, A. Inoue and T. Masumoto: Mater Sci. and Engg A Vol. 181 (1994), p.1423.

Google Scholar

[26] X. F. Wu, Z. Y. Su, Y. Si, L. K. Meng and K. Q. Qiu: Journal of Alloys and Compounds Vol. 452 (2008), p.268.

Google Scholar

[27] G. Duan, A. Wiest, M. L. Lind, A. Kale and W. L. Johnson: Scripta Met. Vol. 58 (2008), p.465.

Google Scholar

[28] Y. C. Kim, W. T. Kim and D. H. Kim: Mater. Sci. Engg A Vol. 375 (2004), p.127.

Google Scholar

[29] J. Cheney, H. Khalifa and K. Vecchio: Mater. Sci. Engg. A Vol. 506 (2009), p.94.

Google Scholar

[30] J. M. Park, H. J. Chang, K. H. Han, W. T. Kim and D. H. Kim: Scripta Met. Vol. 33 (2005), p.1.

Google Scholar

[31] J. Zhang, J. M. Park, D. H. Kim and F. S. Kim: Mater. Sci. Engg. A Vol. 449 (2007), p.290.

Google Scholar

[32] T. Zhang and A. Inoue: Mater. Trans. JIM Vol. 40 (1999), p.301.

Google Scholar

[33] T. Zhang and A. Inoue: Mater. Sci. and Engg. A Vol. 304 (2001), p.771.

Google Scholar

[34] F.Q. Guo, H.J. Wang, S.J. Poon and G.J. Shiflet: Appl. Phys. Lett. Vol. 86 (2005), p.091907.

Google Scholar

[35] Tao Zhang and Akihisa Inoue: Materials Science and Engineering A Vol. 304 (2001), p.771.

Google Scholar

[36] Arun Pratap, K.G. Raval and A.M. Awasthi: Materials Science and Engineering A Vol. 304 (2001), p.357.

Google Scholar

[37] M. Calin, J. Eckert and L. Schultz: Scripta Materialia Vol. 48 (2003), p.653.

Google Scholar

[38] E.S. Park, H.K. Lim, W.T. Kim, D.H. Kim: Journal of Non-Crystalline Solids Vol. 298 (2002), p.15.

Google Scholar

[39] L. Bai, C. X. Cui, Q. Z. Wang, S. J. Wu and Y. M. Qi: Journal of Non Crystalline Solids Vol. 354 (2008), p.3935.

Google Scholar

[40] F. X. Qin, X. M. Wang, G. Q. Xie and A. Inoue: Intermetallics Vol. 16 (2008), p.1026.

Google Scholar

[41] H. Glieter: Acta Mater Vol. 48 (2000), p.1.

Google Scholar

[42] V. K. Nosenko, V. V. Maslov, V. V. Kirilchuk and A. P. Kochkubey: Journal of Physics: Conference Series Vol. 98 (2008), p.072016.

DOI: 10.1088/1742-6596/98/7/072016

Google Scholar

[43] M. E. McHenry, M. A. Willard, H. Iwanabe, R. A. Sutton, Z. Turgut, A. Hsiao and D. E. Laughlin: Bull. Mater. Sci. Vol. 22 (1999), p.495.

DOI: 10.1007/bf02749961

Google Scholar

[44] B. Goswami and A. K. Ray: Journal of Metallurgy and Materials Science Vol. 50 (2008), p.0974.

Google Scholar

[45] X. J. Liu, G. l. Chen, X. D. Hui, H. Y. Hou and K. F. Yao: J. Appl. Phys. Vol. 102 (2007) doi: 10. 10631/1. 2781325.

Google Scholar

[46] Zs Kovacs, P. Henits, S. Hobor and A. Revesz: Rev. Adv. Mater. Sci. Vol. 18 (2008), p.593.

Google Scholar

[47] M. Krasnowski and T. Kulik T: Materials Chemistry and Physics Vol. 116 (2009), p.631.

Google Scholar

[48] S. Hiromoto, A. –P. Tsai, M. Sumita and T. Hanawa: Corrosion Science Vol. 42 (2000), p.1651.

Google Scholar

[49] U. Koster, D. Zander, Triwinkantoro, A. Rudiger and L. Jastrow: Scripta Mater. Vol. 44 (2001), p.1649.

Google Scholar

[50] Svetlana A Shabalovskaya: Bio-Medical Materials and Engineering Vol. 12 (2002), p.69.

Google Scholar

[51] R. S. Dutta, R. T. Savalia and G. K. Dey: Br. Corr. J. Vol. 36 (2001), p.221.

Google Scholar

[52] A. Dhawan, S. Roychowdhury, P. K. De and S. K. Sharma: Bull. Mater. Sci. Vol. 26 (2003), p.609.

Google Scholar

[53] V. Schroeder, C. J. Gilbert and R. O. Ritchie: Scripta. Mater. Vol. 38 (1998), p.1481.

Google Scholar

[54] C. L. Chu, S. K. Wu and Y. C. Yen: Materials Science and Engineering A Vol. 216 (1993), p.193.

Google Scholar

[55] H. H. Hsieh, W. Kai, R. T. Huang, M. X. Pan and T. G. Nieh: Intermetallics Vol. 12 (2004), p.1089.

Google Scholar

[56] Triwikantoro, D Toma, M. Meuris and U. Koster: Journal of Non-Crystalline Solids Vol. 250 (1999), p.719.

DOI: 10.1016/s0022-3093(99)00167-2

Google Scholar

[57] C. H. Xu, X. Q. Ma, S. Q. Shi and C. H. Woo: Materials Science and Engineering A Vol. 371 (2004), p.45.

Google Scholar

[58] C. –M. Chan, S. Trigwell and T. Duerig: Surface and Interface Analysis Vol. 15 (1990), p.349.

Google Scholar

[59] R. B. Inturi and Z. Szklarska-Smialowska: Corrosion Vol. 48 (1992), p.389.

Google Scholar

[60] A. Pardo, E. Otero, M. C. Merino, M. D. Lopez, M. Vazquez and P. Agudo: Corrosion Science Vol 43 (2001), p.689.

Google Scholar

[61] A. Pardo, E. Otero, M. C. Merino, M. D. Lopez, M. Vazquez, P. Agudo and A. M'hich: Corrosion Vol. 58 (2002), p.987.

Google Scholar

[62] K. Mondal, U. K. Chatterjee and B. S. Murty: J. Non-Cryst. Sol. Vol. 334-335 (2004), p.544.

Google Scholar

[63] K. Mondal, B. S. Murty and U. K. Chatterjee: Corrosion Science Vol. 47 (2005), p.2619.

Google Scholar

[64] K. Mondal, B. S. Murty and U. K. Chatterjee: Corrosion Science Vol. 48 (2006), p.2212.

Google Scholar

[65] K. Mondal, U. K. Chatterjee and B. S. Murty: Journal of Alloys and Compounds Vol. 460 (2008), p.172.

Google Scholar

[66] H. Alves, M. G. S. Ferreria and U. Koster: Corrosion. Science Vol. 45 (2003), p.1833.

Google Scholar

[67] C. A. C. Souza, M. F. de Oliveira, J. E. May, W. J. Botta F., N. A. Mariano, S. E. Kuri and C. S. Kiminami: Journal of Non Crystalline Solids Vol. 273 (2000), p.282.

DOI: 10.1016/s0022-3093(00)00174-5

Google Scholar

[68] M. Naka, T. Okada and T. Matsui: Sci. Rep. RITU Vol. A42 (1996), p.23.

Google Scholar

[69] B. Vishwanadh, R. Balasubtramaniam, D. Srivasta and G. K. Dey: Bull. Mater. Sci. Vol. 31, (2008), p.693.

Google Scholar

[70] U. Koster, D. Zander, Triwinkantoro, A. Rudiger and L. Jastrow: Scripta Mater. Vol. 44 (2001), p.1649.

Google Scholar

[71] A. S. Khanna Introduction to High Temperature Oxidation and Corrosion, (ASM International Materials Park, 2002).

Google Scholar

[72] A. Dhawan, K. Sachdev, S. Roychowdhury, P. K. De and S. K. Sharma: J. Non-Cryst. Solids. Vol. 353 (2007), p.2619.

Google Scholar

[73] M. Stern and A. L. Geary: J. Electrochem. Soc. Vol. 104 (1957), p.56.

Google Scholar

[74] Mars G Fontana Corrosion Engineering, (McGraw-Hill International III edition 1967).

Google Scholar

[75] K. Asami, H. M. Kimura, K. Hashimoto and T. Masumoto T: Mater. Trans. JIM Vol. 36, (1995), p.988.

Google Scholar

[76] J. Filik, P.W. May, S.R.J. Pearce, R.K. Wild and K.R. Hallam: Diamond and Related Materials Vol. 12 (2003), p.974.

DOI: 10.1016/s0925-9635(02)00374-6

Google Scholar

[77] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg: Handbook of X-ray photoelectron Spectroscopy, (Perkin Elmer Corporation USA, 1979).

Google Scholar

[78] H. M. Lin, J. K. Wu, C. C. Wang and P. Y. Lee: Mater. Lett. Vol. 62 (2008), p.2995.

Google Scholar

[79] C. Liu, Y. Xin, X. Tian, J. Zhao and P. K. Chen: J. Vac. Sci. and Tech. A Vol. 25 (2007), p.334.

Google Scholar

[80] A. P. Wang and X. C. Chang, W. L. Hou and J. Q. Wang: Mater. Sci. and Engg. A Vol. 449 (2007), p.277.

Google Scholar

[81] F. X. Qin, X. M. Wang, G. Q. Xie, K. Wada, M. Song, K. Furuya, K. Asami and A. Inoue: Intermetallics Vol. 17 (2009), p.945.

DOI: 10.1016/j.intermet.2009.04.009

Google Scholar

[82] G. Manivasagam, D. Dhinasekaran and A. Rajamanickam: Recent Prog. in Corros. Sci. Vol. 2 (2010), p.40.

Google Scholar

[83] J. Bhattarai: Nepal J. Sci. and Tech. Vol. 10 (2009), p.109.

Google Scholar

[84] V. Raman, S. Tamilselvi, S. Nanjundan and N. Rajendran: Trends Biomater. Artif. Organs Vol. 18 (2) (2005), p.137.

Google Scholar

[85] Christoph Leyens, Manfred Peters: Titanium and Titanium Alloys: Fundamentals and Applications, (John Wiley and Sons, 2003).

Google Scholar

[86] M. Naka, T. Okada and T. Matsui: Sci. Rep. RITU Vol. A42 (1996), p.23.

Google Scholar

[87] Y. B. Wang and Y. F. Zheng: Materials Letters Vol. 63 (2009), p.1293.

Google Scholar

[88] X. J. Yan, D. Z. Yang and X. P. Liu: Materials Characterization Vol. 58 (2007), p.623.

Google Scholar

[89] Tao Hu, Chenglin Chu, Yunchang Xin, Shuilin Wu, Kelvin W K Yeung and Paul K Chu: J. Mater. Res. 25 (2010), p.350.

Google Scholar

[90] Shubhra Mathur, Rishi Vyas, S. N. Dolia, K. Sachdev and S. K. Sharma: Advance Materials Research Vol. 67 (2009), p.173.

Google Scholar

[91] Shubhra Mathur, Rishi Vyas, S. N. Dolia, K. Sachdev and S. K. Sharma: Advance Materials Research Vol. 67 (2009), p.179.

Google Scholar

[92] Shubhra Mathur, Rishi Vyas, P. K. Kulriya, K. Asokan, K. Sachdev and S. K. Sharma: Journal of Alloys and Compounds Vol. 503 (2010), p.192.

DOI: 10.1016/j.jallcom.2010.04.231

Google Scholar

[93] G. K. Dey, R. T. Savalia, S. K. Sharma and S. K. Kulkarni: Corrosion Science Vol. 29 (1989), p.823.

Google Scholar

[94] K. Ting Liu, J. Gong Duh: Journal of Electroanalytical Chemistry Vol. 618 (2008), p.45.

Google Scholar

[95] Shubhra Mathur, Rishi Vyas, K. Sachdev and S. K. Sharma: Journal of Non Crystalline Solids Vol. 357 (2011), p.1632.

Google Scholar

[96] Vasilescu Ecaterina, Drob Paula, Popa Mihai V, Mirza-Rosca Julia, Lopez Agustin Santana and Anghel Maria: Revue Roumaine de Chimie Vol. 46 (2001), p.975.

Google Scholar

[97] HuaYingjie, Wang Chongtai, Meng Changgong and Yang Dazhi: Journal of Wuhan University of Technology- Mater. Sci. Ed. Vol. 21 (2006), p.36.

DOI: 10.1007/bf02841200

Google Scholar

[98] Fu Yongqing, Du Hejun, Zhang Sam and Huang Weimin: Materials Science and Engineering A Vol. 403 (2005), p.25.

Google Scholar

[99] V. Zaprianova, R. Raicheff and E. Gattef: Crystal Research and Technology Vol. 33 (1998) p.425.

Google Scholar

[100] M. Naka, K. Hashimoto and T. Masumoto: J. Non Cryst. Solids Vol. 30 (1978), p.29.

Google Scholar

[101] R. Schennach, T. Grady, D. G. Naugle, H. McWhinney, C. C. Hays, W. L. Johnson and D. L. Cocke: J. Vac. Sci. Technol. A Vol. 19 (2001), p.1447.

Google Scholar

[102] I. M. Pohrelyuk and O. I. Yas'kiv: Materials Science Vol. 33 (1997), p.375.

Google Scholar

[103] T. C. Chieh, J. Chu, C. T. Liu and J. K. Wu: Materials Letters Vol. 57 (2003), p.3022.

Google Scholar

[104] Shubhra Mathur: Study of thermo-chemical behavior of some metallic glasses, (PhD work, MNIT, personal communication 2011).

Google Scholar

[105] Shubhra Mathur, Rishi Vyas, K. Sachdev and S. K. Sharma: submitted to Journal of Non Crystalline Solids (2011).

Google Scholar