Role of Particle Size on Structural and Magnetic Behavior of Nanocrystalline Cu-Ni Ferrite

Article Preview

Abstract:

Particle size has significant effect on the magnetic properties of fine particles. In this work, Cu0.2Ni0.8Fe2O4 nano-particles have been synthesized by the co-precipitation method. Different particle sizes were obtained by annealing the samples at various temperatures. The X-ray diffraction (XRD) patterns confirm the formation of cubic spinel structure. The particle size was found to enhance with increasing the annealing temperature. The saturation magnetization and the blocking temperature increase with particle size, which is a typical characteristic of the superparamagnetic behaviour. The dc magnetization measurements show that the samples are superparamagnetic above the blocking temperatures and the blocking temperature of the nanoparticles correlates with the size of the nanoparticles that is found to increase as the function of the particle size. The hysteresis curves show reduction in saturation magnetization in case of nanoparticles as compared to their bulk counterparts. This has been explained on the basis that the magnetic moments in the surface layers of a nanoparticle are in a state of frozen disorder. However, the saturation magnetization increases with particle size, which is a characteristic property of the single domain superparamagnetic particles.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 171)

Pages:

79-91

Citation:

Online since:

May 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.V. Gopalreddy, S.V. Manorama, and V.J. RaO: Sensors and Actuators B Vol. 55(1) (1999), p.90.

Google Scholar

[2] L. Nixon, C.A. Koval, R.D. Noble, and G.S. Slaff: Chem. Mater. Vol. 4 (1992), p.117.

Google Scholar

[3] R.D. MacMichael, R.D. Shull, L.J. Swartzendruber, and R.E. Watson: J. Magn. Magn. Mater Vol. 111 (1992), p.29.

Google Scholar

[4] J. W. M. Bulte: J. Magn. Reson. Imaging Vol. 4 (1994), p.497.

Google Scholar

[5] F. Wei, L. Baoshum, Y. Jizhong, L. Xi, and Z. Muyu: J. Magn. Soc. Jpn. Vol. 22 (1998), p.366.

Google Scholar

[6] H. Gu, K. Xu, Z. Yang, C.K. Chang, B. Xu: Chem. Commun. Vol. 34 (2005), p.4270.

Google Scholar

[7] R.E. Rosensweig, in: Ferrohydrodynamics (Dover Publications, New York 1985).

Google Scholar

[8] U. Luders, A. Barthelemy, M. Bibes, K. Bouzehouane, S. Fusil, E. Jacquet, J.P. Contour, J.F. Bobo, J. Fontcuberta, A. Fert: Adv Mater Vol. 18 (2006), p.1733.

DOI: 10.1002/adma.200500972

Google Scholar

[9] R.K. Selvan, N. Kalaiselvi, C.O. Augustin, C.H. Doh: Electrochem Solid State Lett Vol. 9 (2006), p. A390.

Google Scholar

[10] C.V. Gopalreddy, S.V. Manorama and V.J. RaO: Sensors and Actuators B Vol. 55(1) (1999), p.90.

Google Scholar

[11] R.D. McMichael, R.D. Shull, L.J. Swartzendruber and L.H. Bennett: J. Magn. Magn. Mater. Vol. 111 (1992), p.29.

Google Scholar

[12] R.H. Kodama, A.E. Berkowitz, E.J. McNiff and S. Foner: Phys. Rev. Lett. Vol. 77 (1996), p.394.

Google Scholar

[13] V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst and K.D. Becker: J. Magn. Magn. Mater. Vol. 257 (2003), p.377.

DOI: 10.1016/s0304-8853(02)01279-9

Google Scholar

[14] S.A. Oliver, H.H. Hamdeh and J.C. Ho: Phys. Rev. B 60 (1999), p.3400.

Google Scholar

[15] H.H. Hamdeh, J.C. Ho, S.A. Oliver, R.J. Willey, G. Oliveri and G. Busca: J. Appl. Phys. Vol. 81 (1997), P. 1851.

Google Scholar

[16] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Gueralt and J.M. Greneche: J. Phys.: Condens. Matter Vol. 12 (2000), p.7795.

DOI: 10.1088/0953-8984/12/35/314

Google Scholar

[17] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi and I. Nakatani: Phys. Rev. B Vol. 63 (2001), p.184108.

DOI: 10.1063/1.1377297

Google Scholar

[18] S. Dey, A. Roy, J. Ghosh, R.N. Bhowmik and R. Ranganathan: J. Appl. Phys. Vol. 90 (2001), p.4138.

Google Scholar

[19] L. Wang and F.S. Li: J. Magn. Magn. Mater. Vol. 223 (2001), p.233.

Google Scholar

[20] A.S. Albuquerque, J.D. Ardisson, W.A. A. Macedo and M.C.M. Alves: J. Appl. Phys. Vol. 87 (2000), p.4352.

Google Scholar

[21] D. Yang, L.K. Lavoie, Y. Zhang, Z. Zhang and S. Ge: J. Appl. Phys. Vol. 93 (2003), p.7492.

Google Scholar

[22] V. Šepelák, M. Menzel, I. Bergmann, M. Wiebcke, F. Krumeich, and K.D. Becker: J. Magn. Magn. Mater. Vol. 272–276 (2004), p.1616.

DOI: 10.1016/j.jmmm.2003.12.365

Google Scholar

[23] V. Šepelák and K.D. Becker: Mater. Sci. Eng. A Vol. 375–377 (2004), p.861.

Google Scholar

[24] C. Rath, S. Anand, R.P. Das, K.K. Sahu, S.D. Kulkarni, S.K. Date and N.C. Mishra: J. Appl. Phys. Vol. 91 (2002), p.2211.

Google Scholar

[25] S. Chkoundali, S. Ammar, N. Jouini, F. Fievet, P. Molinie, M. Danot, F. Villain and J. M. Greneche: J. Phys.: Condens. Matter Vol. 16 (2004), p.4357.

DOI: 10.1088/0953-8984/16/24/017

Google Scholar

[26] C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R.J. Joseyphus, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka and J.M. Greneche: J. Appl. Phys. Vol. 90 (2001), p.527.

DOI: 10.1063/1.1377297

Google Scholar

[27] J.H. Nam, S.J. Park and W.K. Kim: IEEE Trans Magn. Vol. 39 (2003), p.3139.

Google Scholar

[28] J.M.D. Coey: Phys. Rev. Lett. Vol. 27 (1971), p.1140.

Google Scholar

[29] F.T. Parker, M.W. Foster, D.T. Margulies and A.E. Berkowitz: Phys. Rev. B Vol. 47 (1993), p.7885.

Google Scholar

[30] S. Linderoth, P.V. Hendriksen, F. Bødker, S. Wells, K. Davis, S.W. Charles and S. Mørup: J. Appl. Phys. Vol. 75 (1994), p.6583.

Google Scholar

[31] R.H. Kodama and A.E. Berkowitz: Phys. Rev. B Vol. 59 (1999), p.6321.

Google Scholar

[32] R.N. Bhowmik, R. Ranganathan, R. Nagarajan, B. Ghosh and S. Kumar: Phys. Rev. B Vol. 72 (2005), p.94405.

Google Scholar

[33] J.M.D. Coey and K. Khalafella: Phys. Status Solidi A Vol. 11 (1972), p.225.

Google Scholar

[34] A.E. Berkowitz, W.J. Schuele and P.J. Flanders: J. Appl. Phys. Vol. 39 (1968), p.1261.

Google Scholar

[35] M. Gracia del Muro, X. Batlle and A. Labarta: Phys. Rev. B Vol. 59 (1999), p.13584.

Google Scholar

[36] R.H. Kodama: J. Magn. Magn. Mat. Vol. 200(1999), p.359.

Google Scholar

[37] D.H. Chen and Y.Y. Chen: J. Colloid Interface Sci. Vol. 9 (2001), p.235.

Google Scholar

[38] J.J. Kingsley, K. Suresh and K.C. Patil: J. Mater. Sci. Vol. 25 (1990), p.1305.

Google Scholar

[39] D.H. Chen and X.R. He: Bull. Mater. Res. Vol. 36 (2001), p.1369.

Google Scholar

[40] S.Z. Zhang and G.L. Messing: J. Am. Ceram. Soc. Vol. 73 (1990), p.61.

Google Scholar

[41] D.H. Chen and Y.Y. Chen: J. Colloid Interface Sci. Vol. 41 (2001), p.236.

Google Scholar

[42] J.L. Duan, J. Liu, H.J. Yao, Dan Mo, M.D. Hou, Y.M. Sun, Y.F. Chen and L. Zhang: Mater. Sci. Eng. B Vol. 147 (2008), p.57.

Google Scholar

[43] D. Mo, J. Liu, H.J. Yao, J.L. Duan, M.D. Hou, Y.M. Sun, Y.F. Chen, Z.H. Xue and L. Zhang: J. Cryst. Growth Vol. 310 (2008), p.612.

Google Scholar

[44] M. Dariel, L.H. Bennett, D.S. Lashmore, P. Lubitz, M. Rubinstein, W.L. Lechter and M.Z. Harford: J. Appl. Phys. Vol. 61 (1987), p.4067.

DOI: 10.1063/1.338529

Google Scholar

[45] T. Feried, G. Shemer and G. Markovich, Adv. Mater. Vol. 13 (15) (2001), p.1158.

Google Scholar

[46] C. Liu, A.J. Rondinone and Z.J. Zhang: Pure Appl. Chem. Vol. 72 (1–2) (2000), p.37.

Google Scholar

[47] N. Nanba and S. Kobayashi: Jpn. J. Appl. Phys. Vol. 17 (1978), p.1819.

Google Scholar

[48] S.R. Sawant and R.N. Patil: Solid State Commun. Vol. 40 (1981), p.391.

Google Scholar

[49] I.W. Park, M. Yoon, Y.M. Kim, Y. Kim, H. Yoon, H.J. Song, V. Volkov, A. Avilov and Y.J. Park: Solid State Commun. Vol. 126(7) (2003), p.385.

DOI: 10.1016/s0038-1098(03)00189-3

Google Scholar

[50] S.N. Dolia, R. Kumar, S.K. Sharma, M.P. Sharma, S. Chander and M. Singh: Current Appl. Phys. Vol. 8 (2008), p.620.

Google Scholar

[51] S.N. Dolia, R. Sharma, M.P. Sharma and N.S. Saxena: Ind. J. Pure & Appl. Phys. Vol. 44 (2006), p.774.

Google Scholar

[52] S.N. Dolia, M.S. Dhawan, Arun S. Prasad, Sudhish Kumar, A. Samariya, R.K. Singhal and Ravi Kumar: Rad. Eff. & Def. of Sol. (2011, In Press) (DOI: 10. 1080/10420150. 2011. 553232).

Google Scholar

[53] B.D. Cullity, in: Elements of X-ray diffraction (Addition Wesley, Reading, Mass 1959), p.132.

Google Scholar

[54] S.N. Dolia and S.K. Jain: Hyperfine Inter. Vol. 160 (2005), p.219.

Google Scholar

[55] S. Manjura Hoque, Md. Amanullah Choudhury, Fakhrul Islam: J. Magn. Mater. Vol. 251 (2002), p.292.

Google Scholar

[56] R.H. Kodama, A.E. Berkowitz, E.J. Jr. McNiff and S. Foner: J. Appl. Phys. Vol. 81 (1997), p.5552.

Google Scholar

[57] S. Chander, S. Kumar, A. Krishnamurthy, B.K. Srivastava and V.K. Aswal: Pramana-J. Phys. Vol. 61(3) (2003), p.617.

Google Scholar

[58] A.J. Rondinone, A.C.S. Samia and Z.J. Zhang: J. Phys. Chem. B Vol. 103 (1999), p.6876.

Google Scholar

[59] S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni, R. Ramesh, R.L. Greene and T. Venkatesan: Phys. Rev. Lett. Vol. 92 (2004), p.166601.

Google Scholar

[60] M. El-Hilo, K. O'Grady and R.W. Chantrell: J. Magn. Magn. Mater. Vol. 114 (1992), p.307.

Google Scholar

[61] L.E. Wenger and J.A. Mydosh: Phys. Rev. B Vol. 29 (1984), p.4156.

Google Scholar

[62] W.F. Brown: Phys. Rev. 130 (1963), p.1677.

Google Scholar

[63] C.P. Been and T.D. Livingston: J. Appl. Phys. Vol. 30 (1995), p. 120S.

Google Scholar

[64] S. Chikazumi: in: Physics of Magnetism (Robert E. Kreiger Publ. Co., Florida, 1978).

Google Scholar