Defect Control in Zinc Oxynitride Semiconductor for High-Performance and High-Stability Thin-Film Transistors

Article Preview

Abstract:

The fabrication of thin-film transistor devices incorporating active semiconductors based on zinc oxynitride (ZnON) compound is presented. It is demonstrated that the addition of appropriate dopant, gallium, in ZnON, suppresses the formation of shallow donor, nitrogen vacancies, and significantly improves electrical characteristics of the resulting TFT. The Ga:ZnON devices with field-effect mobility values exceeding 50 cm2/Vs are achieved, which makes them suitable as switching or driving elements in next-generation flat-panel displays.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Pages:

446-450

Citation:

Online since:

October 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Hosono, Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application, J. Non-Cryst. Solids 352 (2006) 851-858.

DOI: 10.1016/j.jnoncrysol.2006.01.073

Google Scholar

[2] C. -J. Kim, S. Kim, J. -H. Lee, J. -S. Park, S. Kim, J. Park, E. Lee, J. Lee, Y. Park, J. H. Kim, S. T. Shin, U. -I. Chung, Amorphous hafnium-indium-zinc-oxide semiconductor thin film transistors, Appl. Phys. Lett. 95 (2009) 252103.

DOI: 10.1063/1.3275801

Google Scholar

[3] T. Kamiya, K. Nomura, H. Hosono, Present status of amorphous In-Ga-Zn-O thin-film transistors, Sci. Technol. Adv. Mater. 11 (2010) 044305.

DOI: 10.1088/1468-6996/11/4/044305

Google Scholar

[4] Y. Ye, R. Lim, J. M. White, High mobility amorphous zinc oxynitride semiconductor material for thin film transistors, J. Appl. Phys. 106 (2009) 074512.

DOI: 10.1063/1.3236663

Google Scholar

[5] H. -S. Kim, S. H. Jeon, J. S. Park, T. S. Kim, K. S. Son, J. -B. Seon, S. -J. Seo, S. -J. Kim, E. Lee, J. G. Chung, H. Lee, S. Han, M. Ryu, S. Y. Lee, K. Kim, Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors, Sci. Rep. 3 (2013).

DOI: 10.1038/srep01459

Google Scholar

[6] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phy. Rev. B 54 (1996) 11169-11186.

DOI: 10.1103/physrevb.54.11169

Google Scholar

[7] G. Kresse, J. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phy. Rev. B 59 (1999) 1758-1775.

DOI: 10.1103/physrevb.59.1758

Google Scholar

[8] P. E. Blöchl, Projector augmented-wave method, Phy. Rev. B 50 (1994) 17953-17979.

DOI: 10.1103/physrevb.50.17953

Google Scholar

[9] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phy. Rev, Lett. 77 (1996) 3865-3868.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[10] Y. Kang, S. H. Jeon, Y. -W. Son, Y. -S. Lee, M. Ryu, S. Lee, S. Han, Microscopic origin of universal quasilinear band structures of transparent conducting oxides, Phys. Rev. Lett. 108 (2012) 196404.

DOI: 10.1103/physrevlett.108.196404

Google Scholar