[1]
A. Khan, K. Balakrishnan, and T. Katona, Ultraviolet light emitting diodes based on group three nitrides, Nature Photonics 2 (2008) 77-84.
DOI: 10.1038/nphoton.2007.293
Google Scholar
[2]
J. Li, K.B. Nam, M.L. Nakarmi, J.Y. Lin, and H.X. Jiang, Band-edge photoluminescence of AlN epilayers, Appl. Phys. Lett. 81 (2002) 3365-3367.
DOI: 10.1063/1.1518558
Google Scholar
[3]
I.M. Watson, Metal organic vapour phase epitaxy of AlN, GaN, InN, and their alloys: A key chemical technology for advanced device applications, Coordination Chemistry Reviews 257 (2013) 2120-2141.
DOI: 10.1016/j.ccr.2012.10.020
Google Scholar
[4]
H.X. Jiang and J.Y. Lin, AlN epitaxial layers for UV Photonics, in: M. Razeghi, M. Henini (Eds. ), Optoelectronic Devices: III-Nitrides, Elsevier Ltd., ISBN: 0-08-044426-1, 2004, pp.133-177.
DOI: 10.1016/b978-008044426-0/50007-9
Google Scholar
[5]
E. Fred Schubert and J. Cho, UV LEDs Electron-beam excitation, Nature Photonics 4 (2010) 735-736.
Google Scholar
[6]
A. Kakanakova-Georgieva, R. R. Ciechonski, U. Forsberg, A. Lundskog, and E. Janzén, Hot-wall MOCVD for highly efficient and uniform growth of AlN, Cryst. Growth and Design 9 (2009) 880-884.
DOI: 10.1021/cg8005663
Google Scholar
[7]
A. Kakanakova-Georgieva, D. Nilsson, M. Stattin, U. Forsberg, Å. Haglund, A. Larsson, and E. Janzén, Mg-doped Al0. 85Ga0. 15N layers grown by hot-wall MOCVD with low resistivity at room temperature, Physica Status Solidi – Rapid Research Letters 4 (2010).
DOI: 10.1002/pssr.201004290
Google Scholar
[8]
A. Kakanakova-Georgieva, D. Nilsson, X.T. Trinh, U. Forsberg, N.T. Son, and E. Janzén, The complex impact of Silicon and Oxygen on the n-type conductivity of high-Al-content AlGaN, Appl. Phys. Lett. 102 (2013) 132113.
DOI: 10.1063/1.4800978
Google Scholar
[9]
R. Collazo, S. Mita, J. Xie, A. Rice, J. Tweedie, R. Dalmau, and Z. Sitar, Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications, Phys. Status Solidi C 8 (2011) 2031-(2033).
DOI: 10.1002/pssc.201000964
Google Scholar
[10]
R. Zeisel, M.W. Bayerl, S.T.B. Goennenwein, R. Dimitrov, O. Ambacher, M.S. Brandt, and M. Stutzmann, DX-behavior of Si in AlN, Phys. Rev. B 61 (2000) R16283-R16286.
DOI: 10.1103/physrevb.61.r16283
Google Scholar
[11]
N. T. Son, M. Bickermann, and E. Janzén, Shallow donor and DX states of Si in AlN, Appl. Phys. Lett. 98 (2010) 092104.
DOI: 10.1063/1.3559914
Google Scholar
[12]
L. Silvestri, K. Dunn, S. Prawer, and F. Ladouceur, Hybrid functional study of Si and O donors in wurtzite AlN, Appl. Phys. Lett. 99 (2011) 122109.
DOI: 10.1063/1.3641861
Google Scholar
[13]
T. Mattila and R.M. Nieminen, Ab initio study of oxygen point defects in GaAs, GaN, and AlN, Phys. Rev. B 54 (1996) 16676-16682.
DOI: 10.1103/physrevb.54.16676
Google Scholar
[14]
K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy, Jpn. J. Appl. Phys, 46 (2007).
DOI: 10.1143/jjap.46.l307
Google Scholar
[15]
Z. Liliental-Weber, Y. Chen, S. Ruvimov, and J. Washburn, Formation mechanism of nanotubes in GaN, Phys. Rev. Lett. 79 (1997) 2835-2838.
DOI: 10.1103/physrevlett.79.2835
Google Scholar
[16]
M.W. Bayerl, M.S. Brandt, T. Graf, O. Ambacher, J. A. Majewski, M. Stutzmann, D.J. As, and K. Lischka, g-values of effective mass donors in AlxGa1-xN alloys, Phys. Rev. B 63 (2001) 165204.
Google Scholar
[17]
D. J. Chadi, A. H. Clark, and R. D. Burnham, Γ1 conduction electron g factor and matrix elements in GaAs and AlxGa1-xAs alloys, Phys. Rev. B 13 (1976) 4466.
Google Scholar