Silicon and Oxygen in High-Al-Content AlGaN: Incorporation Kinetics and Electron Paramagnetic Resonance Study

Abstract:

Article Preview

The high-Al-content AlxGa1-xN alloys, x>0.70, and AlN is the fundamental wide-band-gap material system associated with the technology development of solid-state LEDs operating at the short wavelengths in the deep-UV (λ < 280 nm). Yet, their properties are insufficiently understood. The present study is intended to bring elucidation on the long-time debated and much speculated Si transition from shallow donor in GaN to a localized deep DX defect in AlxGa1-xN alloys with increasing Al content. For that purpose electron paramagnetic resonance is performed on a particular selection of high-Al-content epitaxial layers of Al0.77Ga0.23N, alternatively Al0.72Ga0.28N, alloy composition.

Info:

Periodical:

Solid State Phenomena (Volumes 205-206)

Edited by:

J.D. Murphy

Pages:

441-445

Citation:

A. Kakanakova-Georgieva et al., "Silicon and Oxygen in High-Al-Content AlGaN: Incorporation Kinetics and Electron Paramagnetic Resonance Study", Solid State Phenomena, Vols. 205-206, pp. 441-445, 2014

Online since:

October 2013

Export:

Price:

$38.00

[1] A. Khan, K. Balakrishnan, and T. Katona, Ultraviolet light emitting diodes based on group three nitrides, Nature Photonics 2 (2008) 77-84.

DOI: https://doi.org/10.1038/nphoton.2007.293

[2] J. Li, K.B. Nam, M.L. Nakarmi, J.Y. Lin, and H.X. Jiang, Band-edge photoluminescence of AlN epilayers, Appl. Phys. Lett. 81 (2002) 3365-3367.

DOI: https://doi.org/10.1063/1.1518558

[3] I.M. Watson, Metal organic vapour phase epitaxy of AlN, GaN, InN, and their alloys: A key chemical technology for advanced device applications, Coordination Chemistry Reviews 257 (2013) 2120-2141.

DOI: https://doi.org/10.1016/j.ccr.2012.10.020

[4] H.X. Jiang and J.Y. Lin, AlN epitaxial layers for UV Photonics, in: M. Razeghi, M. Henini (Eds. ), Optoelectronic Devices: III-Nitrides, Elsevier Ltd., ISBN: 0-08-044426-1, 2004, pp.133-177.

DOI: https://doi.org/10.1016/b978-008044426-0/50007-9

[5] E. Fred Schubert and J. Cho, UV LEDs Electron-beam excitation, Nature Photonics 4 (2010) 735-736.

DOI: https://doi.org/10.1038/nphoton.2010.254

[6] A. Kakanakova-Georgieva, R. R. Ciechonski, U. Forsberg, A. Lundskog, and E. Janzén, Hot-wall MOCVD for highly efficient and uniform growth of AlN, Cryst. Growth and Design 9 (2009) 880-884.

DOI: https://doi.org/10.1016/j.jcrysgro.2009.01.045

[7] A. Kakanakova-Georgieva, D. Nilsson, M. Stattin, U. Forsberg, Å. Haglund, A. Larsson, and E. Janzén, Mg-doped Al0. 85Ga0. 15N layers grown by hot-wall MOCVD with low resistivity at room temperature, Physica Status Solidi – Rapid Research Letters 4 (2010).

DOI: https://doi.org/10.1002/pssr.201004290

[8] A. Kakanakova-Georgieva, D. Nilsson, X.T. Trinh, U. Forsberg, N.T. Son, and E. Janzén, The complex impact of Silicon and Oxygen on the n-type conductivity of high-Al-content AlGaN, Appl. Phys. Lett. 102 (2013) 132113.

DOI: https://doi.org/10.1063/1.4800978

[9] R. Collazo, S. Mita, J. Xie, A. Rice, J. Tweedie, R. Dalmau, and Z. Sitar, Progress on n-type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications, Phys. Status Solidi C 8 (2011) 2031-(2033).

DOI: https://doi.org/10.1002/pssc.201000964

[10] R. Zeisel, M.W. Bayerl, S.T.B. Goennenwein, R. Dimitrov, O. Ambacher, M.S. Brandt, and M. Stutzmann, DX-behavior of Si in AlN, Phys. Rev. B 61 (2000) R16283-R16286.

DOI: https://doi.org/10.1103/physrevb.61.r16283

[11] N. T. Son, M. Bickermann, and E. Janzén, Shallow donor and DX states of Si in AlN, Appl. Phys. Lett. 98 (2010) 092104.

DOI: https://doi.org/10.1063/1.3559914

[12] L. Silvestri, K. Dunn, S. Prawer, and F. Ladouceur, Hybrid functional study of Si and O donors in wurtzite AlN, Appl. Phys. Lett. 99 (2011) 122109.

DOI: https://doi.org/10.1063/1.3641861

[13] T. Mattila and R.M. Nieminen, Ab initio study of oxygen point defects in GaAs, GaN, and AlN, Phys. Rev. B 54 (1996) 16676-16682.

DOI: https://doi.org/10.1103/physrevb.54.16676

[14] K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy, Jpn. J. Appl. Phys, 46 (2007).

DOI: https://doi.org/10.1143/jjap.46.l307

[15] Z. Liliental-Weber, Y. Chen, S. Ruvimov, and J. Washburn, Formation mechanism of nanotubes in GaN, Phys. Rev. Lett. 79 (1997) 2835-2838.

DOI: https://doi.org/10.1103/physrevlett.79.2835

[16] M.W. Bayerl, M.S. Brandt, T. Graf, O. Ambacher, J. A. Majewski, M. Stutzmann, D.J. As, and K. Lischka, g-values of effective mass donors in AlxGa1-xN alloys, Phys. Rev. B 63 (2001) 165204.

DOI: https://doi.org/10.1103/physrevb.63.165204

[17] D. J. Chadi, A. H. Clark, and R. D. Burnham, Γ1 conduction electron g factor and matrix elements in GaAs and AlxGa1-xAs alloys, Phys. Rev. B 13 (1976) 4466.

Fetching data from Crossref.
This may take some time to load.