Photodynamic Effects in Nanocomposites Based on Quantum Dots of Cadmium Sulfide Embedded in a Silicate Matrix, in their Interaction with the Laser Beam

Article Preview

Abstract:

In this paper we study the possibility of modifying the optical properties of nanocomposites based on CdS quantum dots embedded in a silicate matrix, in their interaction with the laser radiation. It was found that the action of laser radiation leads to local change in the refractive index of the nanocomposite, the dynamics of which depends on the exposure conditions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 213)

Pages:

186-191

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Pacifici, H.J. Lezec, H.A. Atwater. All-optical Modulation by Plasmonic Excitation of CdSe Quantum Dots, Nat. photonics. 1 (2007) 402-406.

DOI: 10.1038/nphoton.2007.95

Google Scholar

[2] B. Piccione, C. -H. Cho, L.K. van Vugt, R. Agarwal. All-optical active switching in individual semiconductor nanowires, Nat. Nanotechnol. 7 (2012) 640-645.

DOI: 10.1038/nnano.2012.144

Google Scholar

[3] T. Volz, A. Reinhard, M. Winger, A. Badolato, K.J. Hennessy, E.L. Hu, A. Imamoglu. Strongly correlated photons on a chip, Nat. Nanophotonics 6 (2012) 605–609.

DOI: 10.1038/nphoton.2011.321

Google Scholar

[4] A.W. Brown, M. Xiao. All-optical switching and routing based on an electromagnetically induced absorption grating, Optics Letters 30(7) (2005) 699-701.

DOI: 10.1364/ol.30.000699

Google Scholar

[5] T. Chakraborty. Quantum Dots, Elsevier, (1999).

Google Scholar

[6] H.M. Gong, X. -H. Wang, Y.M. Du, Q.Q. Wang. Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots, J. of Chemical Physics 125 (2006) 024707 (4 pp).

DOI: 10.1063/1.2212400

Google Scholar

[7] S.V. Rempel', A.A. Razvodov, M.S. Nebogatikov, E.V. Shishkina, V. Ya. Shur, A.A. Rempel'. Sizes and Fluorescence of Cadmium Sulfide Quantum Dots, Physics of the Solid State, 55(3) (2013) 624–628.

DOI: 10.1134/s1063783413030244

Google Scholar

[8] Q. Xiao, C. Xiao. Surface-defect-states photoluminescence in CdS nanocrystals prepared by one-step aqueous synthesis method, Appl. Surface Sci., 255 (2009) 7111–7114.

DOI: 10.1016/j.apsusc.2008.12.032

Google Scholar

[9] Yu.A. Shchipunov. Bio-inorganic hybrid nanomaterials, Weinheim: Wiley. (2007) 75-117.

Google Scholar

[10] J. Tang, R.A. Marcus. Photoinduced Spectral Diffusion and Diffusion-Controlled Electron Transfer Reactions in Fluorescence Intermittency of Quantum Dots, J. of the Chinese Chemical Society, 53 (2006) 1-13.

DOI: 10.1002/jccs.200600001

Google Scholar

[11] A. Tang, F. Teng, Y. Hou, Y. Wang, F. Tan, S. Qu, Z. Wang. Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol, Applied Physics Letters 96 (2010) 163112.

DOI: 10.1063/1.3402770

Google Scholar

[12] J.S. Jie., W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee. Photoconductive Characteristics of Single-Crystal CdS Nanoribbons, Nano Letters 6(9) (2006) 1887-1892.

DOI: 10.1021/nl060867g

Google Scholar

[13] V.A. Oleinikov, A.V. Sukhanova, I.R. Nabiev. Fluorescent semiconductor nanocrystals for biology and medicine, Nanotechnologies in Russia, 2 (2007) 160-173.

Google Scholar

[14] Yu.N. Kul'chin, A.V. Shcherbakov, V.P. Dzyuba, S.S. Voznesenskii, G.T. Mikayelyan. Nonlinear-optical properties of heterogeneous liquid nanophase composites based on high-energy-gap Al2O3 nanoparticles, Quantum Electron, 38 (2) (2008) 154–158.

DOI: 10.1070/qe2008v038n02abeh013529

Google Scholar

[15] P. Hariharan, Optical interferometry, second ed, Elsevier, San Diego, (2003).

Google Scholar