Near-Field Optical Probe Based on the Fiber Fabry-Perot Interferometer with Protruding Evanescent Light Source

Article Preview

Abstract:

We studied numerically and experimentally the possibility of the development of a novel probe based on the fiber Fabry-Perot interferometer with an evanescent light source protruding directly toward the sample. It was shown that such probe provides a spatial resolution ~λ/40 for λ=1550 nm. The fabrication process of such a probe is described in detail.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 213)

Pages:

204-209

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. W. Pohl and W. D. M. Lanz, Appl. Phys. Lett. 44 (1984) 651.

Google Scholar

[2] U. Duerig, D. W. Pohl, and F. Rohner, J. Appl. Phys. 59 (1986) 3318–3327.

Google Scholar

[3] E. Betzig, M. Isaacson, and A. Lewis, Appl. Phys. Lett. 51 (1987) 2088–(2090).

Google Scholar

[4] L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).

Google Scholar

[5] В. Hecht, В. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J.F. Martin, and D.W. Pohl, J. Chem. Phys. 112 (2000) 7761.

Google Scholar

[6] Stockle R. M., Schaller N., Deckert V., Fokas C., and Zenobi R, J. Microsc. 194 (1999) 378–382.

DOI: 10.1046/j.1365-2818.1999.00524.x

Google Scholar

[7] Yu. N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, E.V. Pustovalov and A.V. Nepomnyaschii, Optics Letters 36 (2011) 3945-3947.

Google Scholar

[8] Yu. N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, J. Opt. Soc. Am. B 30 (2013) 598–602.

Google Scholar

[9] Yu.N. Kulchin, O.B. Vitrik, E.V. Pustovalov, A.A. Kuchmizhak, and A.V. Nepomnyashchiy, Crystallography Reports 56 (2011) 866.

DOI: 10.1134/s1063774511050142

Google Scholar

[10] Yu.N. Kulchin, O.B. Vitrik, E.V. Pustovalov, A.A. Kuchmizhak, and A.V. Nepomnyashchiy, Quantum Electronics 41 (2011) 249-252.

Google Scholar

[11] Brendel R. and Bormann D, J. Appl. Phys. 71 (1992) 1–6.

Google Scholar

[12] Yu.N. Kulchin, O.B. Vitrik, E.V. Pustovalov, A.A. Kuchmizhak, Tech. Phys. Lett. 36 (2010) 599-601.

Google Scholar

[13] A. Taflove, S.C. Hagness Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, inc. 2000).

Google Scholar

[14] T. Pangaribuan, K. Yamada, Sh. Jiang, Jpn. J. Appl. Phys. 31 (1992) 1302.

Google Scholar

[15] www. thorlabs. com.

Google Scholar

[16] D.R. Turner, United States Patent No. 44, 69, 554 (1984).

Google Scholar