Optical Dielectric Apertureless Probe for Surface Laser Modification with λ/15 Lateral Resolution

Article Preview

Abstract:

A simple apertureless dielectric microprobe in the form of a section of the tapered optical fiber was proposed for surface laser nanomodification. This probe enables surface λ/2-localization of laser beam, as shown both numerically and experimentally. The controllable formation of single through nanoholes with the minimum size down to 35 nm (~λ/15) in the 50-nm Au/Pd film was shown using this probe and a 532-nm pump nanosecond laser. We also report for the first time on the formation of micro-and nanobumps, jet-like microstructures and microholes on optically thick gold films by single nanosecond laser pulses focused through the fiber dielectric apertureless probe. The resulting structures were imaged via scanning electron and atomic force microscopy. It was shown that both the shape and sizes of the obtained microstructures are determined by the pulse energy and film thickness.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 213)

Pages:

210-215

Citation:

Online since:

March 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. P. Pronko, S. K. Dutta, J. Squier, J.V. Rudd, D. Du, and G. Mourou, Opt. Commun. 114 (1995) 106.

Google Scholar

[2] A.G. Vorobiev and C. Guo, Laser & Photonics Reviews (2012) 23.

Google Scholar

[3] T.C. Chong, M.H. Hong, and L.P. Shi, Laser & Photonics Reviews 4 (2010) 123.

Google Scholar

[4] S. Nolte, B.N. Chichkov, H. Welling, Y. Shani, K. Lieberman, and H. Terkel, Optics Letters 24 (1999) 914.

DOI: 10.1364/ol.24.000914

Google Scholar

[5] Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, Applied Physics A 80 (2005) 461.

Google Scholar

[6] L. Novotny and B. Hecht. Principles of Nano-Optics, Cambridge Press, (2006).

Google Scholar

[7] R.M. Stockle, N. Schaller, V. Deckert, C. Fokas, and R. Zenobi, Journal of Microscopy 194 (1999) 378.

DOI: 10.1046/j.1365-2818.1999.00524.x

Google Scholar

[8] F. Keilmann, R. Hillenbrand, Phil. Trans. R. Soc. Lond. A 362 (2004) 787.

Google Scholar

[9] M.H. Hong, S.M. Huang, B.S. Lukyanchuk, T.C. Chong, Sensors and Actuators A 108 (2003) 69.

Google Scholar

[10] A. Chimmalgi, T.Y. Choi, C.P. Grigoropoulos, and K. Komvopoulos, Applied Physics Letters 82 (2003) 1146.

Google Scholar

[11] A. Chimmalgi, C.P. Grigoropoulos, and K. Komvopoulos, Journal of Applied Physics 97 (2005) 104319.

Google Scholar

[12] S. Yakunin, J. Heitz, Applied Optics 48 (2009) 6772.

Google Scholar

[13] G. Wysocki, J. Heitz, and D. Bäuerle, Applied Physics Letters 84 (2004) (2025).

Google Scholar

[14] G. Wysocki, S. T. Dai, T. Brandstetter, J. Heitz, and D. Bäuerle, Applied Physics Letters 79 (2001) 159.

Google Scholar

[15] J. Heitz, S. Yakunin, T. Stehrer, et. al., Proceedings of SPIE 7131 (2009) 71311W.

Google Scholar

[16] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House inc., (2000).

Google Scholar

[17] A.A. Kuchmizhak, Yu.N. Kulchin, O.B. Vitrik, A.G. Savchuk, A.A. Ionin, S.V. Makarov, and S.I. Kudryashov, Optics Communications 308 (2013) 125-129.

DOI: 10.1016/j.optcom.2013.06.051

Google Scholar

[18] Yu.N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, A.V. Nepomnyashchii, A.G. Savchuk, A.A. Ionin, S.V. Makarov, and S.I. Kudryashov, Optics Letters 38 (2013) 1452-1454.

DOI: 10.1364/ol.38.001452

Google Scholar

[19] J. Koch, F. Korte, T. Bauer, C. Fallnich, A. Ostendorf, B.N. Chichkov, Appl. Phys. A 81, (2005) 325 – 328.

DOI: 10.1007/s00339-005-3212-6

Google Scholar

[20] Yu.N. Kulchin, O.B. Vitrik, A.A. Kuchmizhak, A.V. Nepomnyashchii, A.G. Savchuk, A.A. Ionin, S.V. Makarov, S.I. Kudryashov, A.A. Samokhin, JETP (2014) (to be published).

Google Scholar