Structural and Magnetic Properties of Mn-Zn Ferrites Synthesized by Microwave-Hydrothermal Process

Abstract:

Article Preview

Nanocrystalline Mn1-xZnxFe2O4 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) ferrites have been successfully synthesised using microwave–hydrothermal method for high frequency applications. The nanopowders were characterised using X-ray diffraction (XRD) and sintered using microwave furnace at 900°C and the total time taken for sintering is 30 min. The frequency dependence of real and imaginary part of permeability were measured in the range 1 MHz to 1.8 GHz. The saturation magnetisation and coercive force were obtained using a vibration sample magnetometer (VSM) in the field of 1.5 T. The temperature dependence of initial permeability (μi) was measured in the temperature range of 300K to 600K at 10 kHz. The high values of permeability and saturation magnetization enables these materials to be the potential candidates for a number of applications, for example, in transformers, choke coils, noise filters and recording heads.

Info:

Periodical:

Solid State Phenomena (Volume 232)

Edited by:

Hardev Singh Virk

Pages:

45-64

Citation:

K. Praveena et al., "Structural and Magnetic Properties of Mn-Zn Ferrites Synthesized by Microwave-Hydrothermal Process ", Solid State Phenomena, Vol. 232, pp. 45-64, 2015

Online since:

June 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] J. Smit, H.P.J. Wijn. Ferrites, Philips Technical Library, Eindhoven, (1959).

[2] S. Hilpert, Ber. Deut. Chem. Ges. 42 (1909) 2247.

[3] M.M. Barakat, M.A. Henaish, S. A Olofa, A. Tawfik. Piezoelectric effect and current-voltage relation in sodium benzoylacetonate polycrystal, J Thermal Analysis, 37 (1991) 605-611.

DOI: https://doi.org/10.1007/bf01913112

[4] A. Goldman. Modern Ferrite Technology. Van Nostrand Reinhold, New York, (1990).

[5] K. Praveena, K. Sadhana, S. Bharadwaj, S.R. Murthy, Development of nanocrystalline Mn–Zn ferrites for forward type DC–DC converter for switching mode power supplies, Materials Research Innovations 14 (1) (2010) 56-61.

DOI: https://doi.org/10.1179/143307510x12599329343727

[6] R. Valenzuela. Magnetic Ceramics, Cambridge University Press, UK, (1994).

[7] E.S. Murdock, R.F. Simmons. Roadmap for 10 Gbit/in2 media: Challenges. IEEE Trans. Magnetic 28(5) (1992) 3078-3083.

DOI: https://doi.org/10.1109/20.179719

[8] C. Kittel, Introduction to Solid State Physics, Seventh Edition. John Wiley & Sons, Inc., New York, (1996).

[9] J.I. Gersten, and F.W. Smith, The Physics and Chemistry of Materials, John Wiley & Sons, Inc., New York, (2001).

[10] T. Nakamura and K. Hatakeyama, Complex Permeability of Polycrystalline Hexagonal Ferrites, IEEE Trans. Mag. 36 (2000) 3415-3417.

DOI: https://doi.org/10.1109/20.908844

[11] H. Tsunekawa, A. Nakata, T. Kamijo, K. Okutani, R.K. Mishra, G. Thomas, Microstructure and Properties of Commercial Grade Manganese Zinc Ferrites, IEEE Trans. Mag. 15 (1979) 1855-57.

DOI: https://doi.org/10.1109/tmag.1979.1060382

[12] A. Žnidaršič, M. Limpel, M. Drofenik, Effect of Dopants on the Magnetic Properties of MnZn Ferrites for High Frequency Power Supplies, IEEE Trans. Mag, 31(2) (1995) 950-953.

DOI: https://doi.org/10.1109/20.364767

[13] Soon Cheon Byeon, Hae June Je and Kug Sun Hong, Microstructural Optimization of Low-Temperature-Fired Ni–Zn–Cu Ferrites Using Calcination, Jpn. J. Appl. Phys, 36 (1997) 5103-5108.

DOI: https://doi.org/10.1143/jjap.36.5103

[14] K. Praveena, K.B.R. Varma, Ferroelectric and optical properties of Ba5Li2Ti2Nb8O30 ceramics potential for memory applications Journal of Materials Science: Materials in Electronics 25, (2014) 3103–3108.

DOI: https://doi.org/10.1007/s10854-014-1990-3

[15] Jean-Marie Le Breton, Luc Lechevallier, Jian Feng Wang, Rex Harris, Structural analysis of co-precipitated Sr1−xLaxFe12−xCoxO19 powders, J. Magn. Magn. Mater. 272– 276 (2004) 2214–2215.

DOI: https://doi.org/10.1016/j.jmmm.2003.12.1201

[16] K. Praveena, B. Radhika, S. Srinath, Dielectric and Magnetic Properties of NiFe2-xBixO4 Nanoparticles at Microwave Frequencies Prepared via co-precipitation Method Procedia Engineering 76 (2014) 1-7.

DOI: https://doi.org/10.1016/j.proeng.2013.09.244

[17] Malick Jean, Virginie Nachbaur, Julien Bran, Jean-Marie Le Breton, Synthesis and characterization of SrFe12O19 powder obtained by hydrothermal process, J. Alloys. Comp, 496 (2010) 306-312.

DOI: https://doi.org/10.1016/j.jallcom.2010.02.002

[18] K. Praveena, S. Srinath, Effect of Gd3+ on dielectric and magnetic properties of Y3Fe5O12, J. Magn. Magn. Mater. 349 (2014) 45-50.

DOI: https://doi.org/10.1016/j.jmmm.2013.08.035

[19] K. Praveena, K.B.R. Varma, Improved magneto-electric response in Na0. 5Bi0. 5TiO3– MnFe2O4 composites, J. Mater. Sci. Mater. Electron. 25 (2014) 111–116.

DOI: https://doi.org/10.1007/s10854-013-1557-8

[20] K. Sadhana, R. Sandhya, K. Praveena, DC-Bias-Superposition Characteristics of Ni0. 4Zn0. 2Mn0. 4Fe2O4 Nanopowders Synthesized by Auto-Combustion Journal of Nanoscience and Nanotechnology 15(6) (2015) 4552-4557.

DOI: https://doi.org/10.1166/jnn.2015.9809

[21] Praveena Kuruva, Uma Maheshwara Singh Rajaputra, Srinath Sanyadanam, Ramana Murthy Sarabu, Effect of microwave sintering on grain size and dielectric properties of barium titanate, Turkish Journal of Physics, 37 (2013) 312-321.

DOI: https://doi.org/10.3906/fiz-1303-4

[22] K. Praveena, K. Sadhana, S. Srinath, S.R. Murthy, Effect of TiO2 on electrical and magnetic properties of Ni0. 35Cu0. 12Zn0. 35Fe2O4 synthesized by the microwave–hydrothermal method, J. Phys. Chem. Solids 74 (2013) 1329–1335.

DOI: https://doi.org/10.1016/j.jpcs.2013.04.014

[23] K. Praveena, K. Sadhana, S.R. Murthy, Microwave-hydrothermal synthesis of Ni0. 53Cu0. 12Zn0. 35Fe2O4/SiO2 nanocomposites for MLCI Integrated Ferroelectrics, 119(1) (2010) 122-134.

DOI: https://doi.org/10.1080/10584587.2010.503791

[24] Sadhana Katlakunta, Sher Singh Meena, S. Srinath, M. Bououdina, R. Sandhya, K. Praveena, Improved magnetic properties of Cr3+ doped SrFe12O19 synthesized via microwave hydrothermal route, Materials Research Bulletin 63 (2015) 58–66.

DOI: https://doi.org/10.1016/j.materresbull.2014.11.043

[25] J.R. Mac Ewan, Proc. Brit. Ceram. Soc. 3 (1965) 223.

[26] B.D. Culity, Elements of X-ray diffraction, Addison-Wesley Publishing Company, Inc., USA, (1967).

[27] K. Praveena, S. Srinath, The effect of Sb on the electrical and magnetic properties of Ni- Zn ferrites prepared by sol–gel auto-combustion method, J. Electro-ceramics, 31 (1-2) (2013)168-175.

DOI: https://doi.org/10.1007/s10832-013-9840-x

[28] J.L. Snoek, Physica XIV 4 (1948) 207.

[29] K. Praveena, S. Srinath, Dielectric and Magnetic Properties of NiFe2−xBixO4 Nanoparticles, Advanced Science, Engineering and Medicine, 6(3) (2014) 359-365.

[30] George T Rado, Magnetic Spectra of Ferrites, Reviews of Modern Physics 25(1) (1953) 81-89.

[31] T. Nakumura, Low-temperature sintering of Ni-Zn-Cu ferrite and its permeability spectra, J. Magn. Magn. Mater. 168 (3) (1997) 285-291.

[32] T. Nakamura. T. Tsutaoka and K. Hatakeyama, Frequency dispersion of permeability in ferrite composite materials, J. Magn. Magn. Mater. 138 (1994) 319-328.

DOI: https://doi.org/10.1016/0304-8853(94)90054-x

[33] Y. Naito, ICF, Tokyo, Japan (1933) 558.

[34] A. Globus, H. Pascard, V. Cagan, Distance between Magnetic Ions and Fundamental Properties in Ferrites, J. de. Physique (Paris) 38 (1977) C1-163-168.

DOI: https://doi.org/10.1051/jphyscol:1977132

[35] R.F. Soohoo, Theory and application of ferrites, Prentice- Hall, USA, (1960).

[36] Zhenxing Yue, Ji Zhou, Xiaohui Wang, Zhilun Gui, Longtu Li, Low-temperature sintered Mg-Zn-Cu ferrite prepared by auto-combustion of nitrate-citrate gel, J Mater. Sci. Lett. 20 (4) (2001) 1327-1329.

DOI: https://doi.org/10.1023/a:1010958719771

[37] Xiao-Hui Wang, Tian-Ling Ren, Long-Yu Li, Lian-Sheng Zhang, Preparation and magnetic properties of BaZn2−xCoxFe16O27 nanocrystalline powders, J. Magn. Magn. Mater. 184 (1998) 95-100.

DOI: https://doi.org/10.1016/s0304-8853(97)01060-3

[38] M.A. Amer, Mossbauer, Infrared, and X-Ray Studies of the Mn-Zn Ferrites, Phys. Status Solidi A 151(1) (1995) 205-214.

DOI: https://doi.org/10.1002/pssa.2211510124

[39] J.M.D. Coey, Noncollinear spin structures, Canadian J. Phys. 65 (1987) 1210-1232.

[40] Q.A. Pankhurst and R.J. Polland, Origin of the spin-canting anomaly in small ferrimagnetic particles, Phys. Rev. Lett. 67(2) (1991) 248-250.

DOI: https://doi.org/10.1103/physrevlett.67.248

[41] D. Vollath, D.V. Szabu, R.D. Taylor, and J.O. Willis, Synthesis and Magnetic Properties of Nanostructured Maghemite, Journal of Materials Research 12 (1997)2175-2182.

DOI: https://doi.org/10.1557/jmr.1997.0291

[42] A.H. Morrish, Z.W. Li, and Z.X. Zhou, Origin of Elevated Ordering Temperature in MnFe2O4 Nanometer Particles, 7th International Conference on Ferrites, J. de Phyique (Paris) 7 (1997) p. C1-513.

DOI: https://doi.org/10.1051/jp4:19971209

[43] Montserrat García del Muro, Xavier Batlle and Amílcar Labarta, Erasing the glassy state in magnetic fine particles, Phys. Rev. B 59 (1999) 13584-13587.

DOI: https://doi.org/10.1103/physrevb.59.13584

[44] Q. Chen, Z.J. Zhang, Size-dependent super-paramagnetic properties of MgFe2O4 spinel ferrite nanocrystallites, Appl. Phys. Lett, 73 (21) (1998) 3156-3158.

DOI: https://doi.org/10.1063/1.122704

[45] A.F. Bakuzis, P.C. Morais, On the origin of the surface magnetic anisotropy in manganese–ferrite nanoparticles, J. Magn. Magn. Mater. 226-230 (2001) 1924-(1926).

DOI: https://doi.org/10.1016/s0304-8853(00)00664-8

[46] C. Rath, K.K. Sahu, S. Anand, S.K. Date, N.C. Mishra, R.P. Das, Preparation and characterization of nanosize Mn–Zn ferrite, J. Magn. Magn. Mater. 202(1) (1999) 77- 84.

DOI: https://doi.org/10.1016/s0304-8853(99)00217-6

[47] D. J. Craik, Magnetic Oxides, Part 1, Wiley, New York, (1975).

[48] P. Yaseneva, M. Bowker, G. Hutchings, Structural and magnetic properties of Zn-substituted cobalt ferrites prepared by co-precipitation method, Phys. Chem. Chem. Phys, 13 (2011) 18609-18614.

DOI: https://doi.org/10.1039/c1cp21516g

[49] S. Kumar, A. Sharma, M. Singh and S. P. Sharma, Archives of Physics Research 5 (2014) 18-4 (http: /scholarsresearchlibrary. com/archive. html).

Fetching data from Crossref.
This may take some time to load.