Structural, Electrical and Magnetic Properties of Ni Doped Co-Zn Nanoferrites and their Application in Photo-Catalytic Degradation of Methyl Orange Dye

Article Preview

Abstract:

Nickel substituted cobalt zinc nanoferrites (Co0.6Zn0.4NixFe2-xO4, x=0.2, 0.4, 0.6, 0.8 and 1.0) were successfully synthesised by sol gel method. FT-IR studies showed two absorption bands in the range of 400-600 cm-1 corresponding to the M-O bond in the tetrahedral and octahedral clusters, respectively. Powder X-ray diffraction patterns revealed that all the samples had cubic structure with Fd-3m space group.The lattice constant was observed to increase with increase in nickel substitution, thus altering the unit cell volume. An examination of the magnetic properties revealed an increase in saturation magnetization with increasing Ni concentration upto x=0.4, and a decrease there after.These results could be explained using Neel's collinear two-sub-lattice model and three sub-lattice non-collinear model suggested by Yafet and Kittel. DC resistivity was found to decrease with increase in temperature due to semiconductor nature of nanoferrites. The catalytic activity was found to be maximum at x = 0.2 and further found to decrease with increase in nickel concentration

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 232)

Pages:

197-211

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar, M.A. Khan, New Mg0. 5CoxZn0. 5-xFe2O4 nano-ferrites: Structural elucidation and electromagnetic behavior evaluation, Current Appl. Phys. 14 (2014) 716-720.

DOI: 10.1016/j.cap.2014.02.021

Google Scholar

[2] Ch. Sujatha, K.V. Reddy, K.S. Babu, A.R.C. Reddy, K.H. Rao, Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano-ferrite, Ceram. Int. 38 (2012) 5813–5820.

DOI: 10.1016/j.ceramint.2012.04.029

Google Scholar

[3] R. Nongjai, S.L. Khan, K. Asokan, H. Ahmed, I. Khan, Magnetic and electrical properties of In doped cobalt ferrite nanoparticles, J. Appl. Phys. 112 (2012) 1-8.

DOI: 10.1063/1.4759436

Google Scholar

[4] K.M. Batoo, M.A. El-sadek, Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method, J. Alloys Compd. 566 (2013) 112–119.

DOI: 10.1016/j.jallcom.2013.02.129

Google Scholar

[5] A.V. Raut, R. S. Barkule, D.R. Shengule, K.M. Jadhav, Synthesis, structural investigation and magnetic properties of Zn2+ substituted cobalt ferrite nanoparticles prepared by the sol–gel auto-combustion technique, J. Magn. Magn. Mater. 358-359 (2014).

DOI: 10.1016/j.jmmm.2014.01.039

Google Scholar

[6] S.J. Azhagushanmugam, N. Suriyanarayanan, R. Jayaprakash, Effect of Cation Distribution on Structural and Magnetic Properties of Nickel Cobalt Zinc Ferrites, Adv. Mater. Sci. Eng. 2013 (2013) 1-5.

DOI: 10.1155/2013/713684

Google Scholar

[7] G. Sathishkumar, C. Venkataraju, K. Sivakumar, Synthesis, Structural and Dielectric Studies of Nickel Substituted Cobalt-Zinc Ferrite, Mater. Sci. Appl. 1 (2010) 19-24.

DOI: 10.4236/msa.2010.11004

Google Scholar

[8] S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, J.H. Kim, A.V. Moholkar, C.H. Bhosale, Structural, dielectric and magnetic properties of Ni substituted zinc ferrite, J. Magn. Magn. Mater. 363 (2014) 114–120.

DOI: 10.1016/j.jmmm.2014.03.024

Google Scholar

[9] Y. Tang, X. Wang, Q. Zhang, Y. Li, H. Wang, Solvothermal synthesis of Co1-xNixFe2O4 nanoparticles and its application in ammonia vapors detection, Progress in Natural Science: Mater. Int. 22 (2012) 53–58.

DOI: 10.1016/j.pnsc.2011.12.009

Google Scholar

[10] C.E. Botez, K. Chattrakun, A.J.M. Magana , K.H. Pannell, J.A.M. Aquino, Magnetic property enhancement and crystal structures in bulk and nano-sized ZnxNi1−xFe2O4 (0 ≤ x ≤ 1), Phys. Lett. A 376 (2012) 2730–2734.

DOI: 10.1016/j.physleta.2012.07.026

Google Scholar

[11] M.A. Khan, M. Islam, M. Asif Iqbal, M. Ahmad, M.F. Din, G. Murtaza, I. Ahmad, M.F. Warsi, Magnetic, ferromagnetic resonance and electrical transport study of Ni1-xTbxFe2O4 spinel ferrites, Ceram. Int. 40 (2014) 3571–3577.

DOI: 10.1016/j.ceramint.2013.09.071

Google Scholar

[12] M.S. Anwar, F. Ahmed, B.H. Koo, Enhanced relative cooling power of Ni1-xZnxFe2O4 (0. 0 ≤ x ≤ 0. 7) ferrites, Acta Mater. 71 (2014) 100–107.

DOI: 10.1016/j.actamat.2014.03.002

Google Scholar

[13] A. Kumar, M. Arora, M.S. Yadav, R.P. Pant, Induced size effect on Ni doped Nickel Zinc Ferrite Nanoparticles, Physics Procedia 9 (2010) 20–23.

DOI: 10.1016/j.phpro.2010.11.006

Google Scholar

[14] K.N. Harish, H.S.B. Naik, P.N.P. Kumar, R. Viswanath, Optical and Photocatalytic Properties of Solar Light Active Nd- Substituted Ni Ferrite Catalysts: For Environmental Protection, ACS Sustainable Chem. Eng. 1 (2013) 1143−1153.

DOI: 10.1021/sc400060z

Google Scholar

[15] R. Sharma, S. Singhal, Structural, magnetic and electrical properties of zinc doped nickel ferrite and their application in photo catalytic degradation of methylene blue, Physica B 414 (2013) 83–90.

DOI: 10.1016/j.physb.2013.01.015

Google Scholar

[16] R. Chen, W. Wang, X. Zhao, Y. Zhang, S. Wu, F. Li, Rapid hydrothermal synthesis of magnetic CoxNi1-xFe2O4 nanoparticles and their application on removal of Congo red, Chem. Eng. J. 242 (2014) 226–233.

DOI: 10.1016/j.cej.2013.12.016

Google Scholar

[17] S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co–Cd ferrites, CoCd0. 4MnxFe1. 6-xO4 (0. 1 ≤ x ≤ 0. 6): Cation distribution, structural, magnetic and electrical properties, J. Mol. Struct. 1038 (2013) 45–51.

DOI: 10.1016/j.molstruc.2013.01.020

Google Scholar

[18] S. Verma, J. Chand, M. Singh, Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0. 2Mn0. 5Ni0. 3AlyFe2-yO4 ferrites synthesized by citrate precursor method, J. Alloys Compd. 587 (2014) 763–770.

DOI: 10.1016/j.jallcom.2013.10.258

Google Scholar

[19] S. Singhal, S. Jauhar, N. Lakshmi, S. Bansal, Mn3+ substituted Co–Cd ferrites, CoCd0. 4MnxFe1. 6-xO4 (0. 1 ≤ x ≤ 0. 6): Cation distribution, structural, magnetic and electrical properties, J. Mol. Struct. 1038 (2013) 45–51.

DOI: 10.1016/j.molstruc.2013.01.020

Google Scholar

[20] C. Venkataraju, Effect of Nickel on the Structural Properties of Mn – Zn Ferrite Nano Particles, Appl. phys. Res. 1 (2009)41-45.

DOI: 10.5539/apr.v1n1p41

Google Scholar

[21] G.N. Chavan, P.B. Belavi, L.R. Naik, B.K. Bammannavar, K.P. Ramesh, S. Kumar, Electrical and magnetic properties of nickel substituted cadmium ferrites, Int. J. Sci. Tech. Res. 2 (2013) 2277-8616.

Google Scholar

[22] M.Y. Lodhi, K. Mahmood, A. Mahmood, H. Malik, M.F. Warsi, I. Shakir, M. Asghar, M.A. Khan, New Mg0. 5CoxZn0. 5-xFe2O4 nano-ferrites: Structural elucidation and electromagnetic behavior evaluation, Current Appl. Phys. 14 (2014) 716-720.

DOI: 10.1016/j.cap.2014.02.021

Google Scholar

[23] R. Dhanaraju, M.K. Raju, V. Brahmajirao, S. Bangarraju, Verwey's Hopping Transition Mechanism in relation to Dielectric studies of Zn & Sb substituted Cu ferrites, Int. J. Sci. Tech. 1 (2012) 277-285.

Google Scholar

[24] S.C. Chaudhari, A.K. Ghatage, Electrical and dielectric behaviour of chromium substituted nickel ferrite, Der Chemica Sinica 4 (2013) 47-51.

Google Scholar

[25] I. H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route, J. Magn. Magn. Mater. 320 (2008) 270–275.

DOI: 10.1016/j.jmmm.2007.05.032

Google Scholar

[26] S. Verma, J. Chand, M. Singh, Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0. 2Mn0. 5Ni0. 3AlyFe2-yO4 ferrites synthesized by citrate precursor method, J. Alloys Compd. 587 (2014) 763–770.

DOI: 10.1016/j.jallcom.2013.10.258

Google Scholar

[27] A.I. Borhan, P. Samoila, V. Hulea, A.R. Iordan, M.N. Palamaru, Effect of Al3+substituted zinc ferrite on photo catalytic degradation of Orange I azo dye, J. Photochem. Photobiol. A: Chem. 279 (2014) 17–23.

DOI: 10.1016/j.jphotochem.2014.01.010

Google Scholar