[1]
S. Xu, Y. Qin, C. Xu, Y. Wei, R. Yang, Z. L. Wang, Self-powered nanowire devices, Nat. Nanotech. 5 (2010) 366-373.
DOI: 10.1038/nnano.2010.46
Google Scholar
[2]
T. D. Nguyen, J. M. Nagarah, Y. Qi, S. S. Nonnenmann , A. V. Morozov , S. Li , C. B. Arnold, M. C. McAlpine, Wafer-Scale Nanopatterning and Translation into High-Performance Piezoelectric Nanowires, Nano Lett. 10 (2010) 4595–4599.
DOI: 10.1021/nl102619c
Google Scholar
[3]
Y. Qi, N. T. Jafferis, K. Lyons Jr., C. M. Lee, H. Ahmad, M. C. McAlpine, Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion, Nano Lett. 10 (2010) 524.
DOI: 10.1021/nl903377u
Google Scholar
[4]
S. M. Kogan, Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals, Sov. Phys. Solid State 5(10) (1964) 2069–70; see also E.V. Bursian and O. L. Zaikovskii, Sov. Phys. Solid State 10 (1968) 1121.
Google Scholar
[5]
J. F. Scott, Lattice perturbations in CaWO4 and CaMoO4, J. Chem. Phys. 48 (1968) 874.
Google Scholar
[6]
V. L. Indenbom, E. B. Loginov, M. A. Osipov, Flexoelectric effect and crystal structure, Kristalografija 26 (1981) 1157-62.
Google Scholar
[7]
M. Marvan, A. Havr´anek, Flexoelectric effect in elastomers, Progr. Colloid Polym. Sci. 78 (1988) 33–36.
Google Scholar
[8]
A. K. Tagantsev, Pyroelectric, Piezoelectric, flexoelectric, and thermal polarization effects in ionic crystals, Sov. Phys. Usp. 30 (1987) 588–603.
DOI: 10.1070/pu1987v030n07abeh002926
Google Scholar
[9]
R. Resta, Towards a bulk theory of flexoelectricity, Phys. Rev. Lett. 105 (2010) 127601-4.
Google Scholar
[10]
A. K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline dielectrics, Phys. Rev. B 34 (1986) 5883–5888.
DOI: 10.1103/physrevb.34.5883
Google Scholar
[11]
P. Zubko, G. Catalan, A. Buckley, P. R. L. Welche, J. F. Scott, Strain-Gradient-Induced Polarization in SrTiO3 Single Crystals, Phys. Rev. Lett. 99 (2007) 167601-4.
DOI: 10.1103/physrevlett.100.199906
Google Scholar
[12]
P. Zubko, G. Catalan, A. K. Tagantsev, Flexoelectric Effect in Solids, Annu. Rev. Mater. Res. 43 (2013) 387–421.
DOI: 10.1146/annurev-matsci-071312-121634
Google Scholar
[13]
W. Ma, L. E. Cross, Observation of the flexoelectric effect in relaxor Pb ( Mg 1/3 Nb 2/3) O3 ceramics, Appl. Phys. Lett. 78 (2001) 2920–2921.
DOI: 10.1063/1.1356444
Google Scholar
[14]
W. Ma, L. E. Cross, Strain-gradient-induced electric polarization in lead zirconate titanate ceramics, Appl. Phys. Lett. 82 (2003).
DOI: 10.1063/1.1570517
Google Scholar
[15]
A. Biancoli, C. M. Fancher, J. L. Jones, D. Damjanovic, Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity, Nat. Materials. 14 (2015) 224-229.
DOI: 10.1038/nmat4139
Google Scholar
[16]
O. Aktas, M. A. Carpenter, E. K. H. Salje, Polar precursor ordering in BaTiO3 detected by resonant piezoelectric spectroscopy, Appl. Phys. Lett. 103 (2013) 142902-4.
DOI: 10.1063/1.4823576
Google Scholar
[17]
A. N. Morozovska, E. A. Eliseev, S. V. Kalinin, L. Q. Chen, V. Gopalan, Surface polar states and pyroelectricity in ferroelastics induced by flexo-roto field, Appl. Phys. Lett. 100 (2012) 142902.
DOI: 10.1063/1.3701152
Google Scholar
[18]
W. Kleemann, F. J. Schafer, M. D. Fontana, Crystal optical studies of spontaneous and precursor polarization in KNbO3, Phys. Rev. B 30 (1984) 1148-1154.
Google Scholar
[19]
J. Narvaez, G. Catalan, Origin of the enhanced flexoelectricity of relaxor ferroelectrics Appl. Phys. Lett. 104 (2014) 162903.
DOI: 10.1063/1.4871686
Google Scholar
[20]
R. Maranganti, P. Sharma, Atomistic determination of flexoelectric properties of crystalline dielectrics, Phys. Rev. B 80 (2009) 054109.
DOI: 10.1103/physrevb.80.054109
Google Scholar
[21]
J. Hong, G. Catalan, J. F. Scott, E. Artacho, The flexoelectricity of barium and strontium titanates from first principles, J. Phys.: Condens. Matter 22 (2010) 112201.
DOI: 10.1088/0953-8984/22/11/112201
Google Scholar
[22]
J. Hong, D. Vanderbilt, First-principles theory and calculation of flexoelectricity, Phys. Rev. B 88 (2013) 174107.
Google Scholar
[23]
P. Hana, Study of Flexoelectric Phenomenon from Direct and from Inverse Flexoelectric Behavior of PMNT Ceramic, Ferroelectrics 351 (2007) 196–203.
DOI: 10.1080/00150190701354281
Google Scholar
[24]
S. E. Park, T. R. Shrout, Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals, J. Appl. Phys. 82 (1997) 1804–1811.
DOI: 10.1063/1.365983
Google Scholar
[25]
A. A. Bokov, Z. G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure, J. Mater. Sci. 41 (2006) 31–52.
DOI: 10.1007/s10853-005-5915-7
Google Scholar
[26]
M. Correa, A. Kumar, S. Priya, R. S. Katiyar, J. F. Scott, Phonon anomalies and phonon-spin coupling in oriented PbFe0. 5Nb0. 5O3 thin films, Physical Review B 83(1) (2011) 014302.
Google Scholar
[27]
Y. Qi, J. Kim, T. D. Nguyen, B. Lisko, P. K. Purohit, M. C. McAlpine, Enhanced Piezoelectricity and Stretchability in Energy Harvesting Devices Fabricated from Buckled PZT Ribbon, Nano Lett. 11 (2011) 1331.
DOI: 10.1021/nl104412b
Google Scholar
[28]
F. C. Frank, On the theory of liquid crystals, Discuss. Faraday Soc. 25(1) (1958) 19–28, doi: 10. 1039/DF9582500019.
Google Scholar
[29]
R. B. Meyer, Piezoelectric effects in liquid crystals, Phys. Rev. Lett. 22(18) (1969) 918–921.
DOI: 10.1103/physrevlett.22.918
Google Scholar
[30]
J. Prost, J. P. Marcerou, On the microscopic interpretation of flexoelectricity, J. Phys. France 38(3) (1977) 315–324.
DOI: 10.1051/jphys:01977003803031500
Google Scholar
[31]
E. V. Bursian, O. I. Zaikovski, Changes in the curvature of a ferroelectric film due to polarization, Sov. Phys. -Solid State 10 (1968) 1121-1124.
Google Scholar
[32]
Y. Luo, Y. Luo, X. Li, L. Chang, W. Gao, G. Yuan, J. Yin and Z. Liu, Upward ferroelectric self-poling in (001) oriented PbZr0. 2Ti0. 8O3 epitaxial films with compressive strain, AIP Adv. 3 (2013) 122101.
DOI: 10.1063/1.4840595
Google Scholar
[33]
J. Fousek, L. E. Cross, D. B. Litvin, Possible piezoelectric composites based on the flexoelectric effects, Mater. Lett. 39 (1999) 287-291.
DOI: 10.1016/s0167-577x(99)00020-8
Google Scholar
[34]
D. Lee, A. Yoon, S. Y. Jang, J. G. Yoon, J. S. Chung, M. Kim, J. F. Scott, T. W. Noh, Giant flexoelectric effect in ferroelectric epitaxial thin films, Phys. Rev. Lett. 107 (2011) 057602.
DOI: 10.1103/physrevlett.107.057602
Google Scholar
[35]
D. Lee, TW. Noh, Giant flexoelectric effect through interfacial strain relaxation, Philos. Trans. R. Soc. Lond. Ser. A 370 (2012) 4944–57.
DOI: 10.1098/rsta.2012.0200
Google Scholar
[36]
A. K. Tagantsev, A. S. Yurkov, Flexoelectric effect in finite samples, Appl. Phys. Lett. 112, (2012) 044103.
DOI: 10.1063/1.4745037
Google Scholar
[37]
B. Jaffe, W. Cook, H. Jaffe, Piezoelectric Ceramics, Academic Press, New York, (1971).
Google Scholar
[38]
R. Pelrine, R. Kornbluh, Q. Pei, J. Joseph, High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%, Science 287 (2000) 836.
DOI: 10.1126/science.287.5454.836
Google Scholar
[39]
J. Y. Fu, W Zhu, N. Li, L. E. Cross, Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition, J. Appl. Phys. 100(2) (2006) 024112.
DOI: 10.1063/1.2219990
Google Scholar
[40]
K. B. Tolpygo, Long wavelength oscillations of diamond-type crystals including long range forces, Sov. Phys. Sol. State 4 (1963) 1297.
Google Scholar
[41]
V. S. Mashkevich, Sov. Phys. JETP 9, (1959) 1237.
Google Scholar
[42]
P. V. Yudin, A. K. Tagantsev, Fundamentals of flexoelectricity in solids, Nanotechnology 24 (2013) 43.
DOI: 10.1088/0957-4484/24/43/432001
Google Scholar
[43]
J. Hong, D. Vanderbilt , First-principles theory of frozen-ion flexoelectricity, Phys. Rev. B 84 (2011) 180101.
DOI: 10.1103/physrevb.84.180101
Google Scholar
[44]
G. Catalan, L. J. Sinnamon, J. M. Gregg, The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films, J. Phys.: Condens. Matter 16 (2004) 2253–2264.
DOI: 10.1088/0953-8984/16/13/006
Google Scholar
[45]
G. Catalan, B. Noheda, J. McAneney, L. J. Sinnamon, J. M. Gregg, Strain gradients in epitaxial ferroelectrics, Phys. Rev. B 72 (2005) 020102 R.
DOI: 10.1103/physrevb.72.020102
Google Scholar
[46]
J. F. Scott, Flexoelectric spectroscopy, J. Phys.: Condens. Matter 25 (2013) 331001.
Google Scholar
[47]
R. Maranganti, N. D. Sharma, P. Sharma, Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions, Phys. Rev. B 74 (2006) 014110.
DOI: 10.1103/physrevb.74.014110
Google Scholar
[48]
A. K. Tagantsev, Electric polarization in crystals and its response to thermal and elastic perturbations, Phase Transit 35(3–4) (1991) 119–203.
DOI: 10.1080/01411599108213201
Google Scholar
[49]
L. E. Cross, Flexoelectric effect, Journal of Materials Science 63 (2006) 4153.
Google Scholar
[50]
A. Klic, M. Marvan, Theoretical Study of the Flexoelectric Effect Based on a Simple Model of Ferroelectric Material, Integrated Ferroelectric 63 (2004) 155.
DOI: 10.1080/10584580490459341
Google Scholar
[51]
M. Gharbi, Z. H. Sun, P. Sharma, K. White, S. El-Borgi, Flexoelectric properties of ferroelectrics and the nanoindentation size-effect, International Journal of Solids and Structures 48 (2011) 249–256.
DOI: 10.1016/j.ijsolstr.2010.09.021
Google Scholar
[52]
T. Kato, N. Mizoshita, K. Kishimoto, Functional liquid-crystalline assemblies: self-organized soft materials, Angew. Chem. Int. Ed. Engl 45 (2006) 38.
DOI: 10.1002/anie.200501384
Google Scholar
[53]
S. Baskaran, X. He, Y. Wang, J. Y. Fu, Strain gradient induced electric polarization in α-phase polyvinylidene fluoride films under bending conditions, J. Appl. Phys. 111 (2012) 014109.
DOI: 10.1063/1.3673817
Google Scholar
[54]
S. Baskaran, N. Ramachandran, X. He, S. Thiruvannamalai, H. J. Lee , H. Heo , Q. Chen , J. Y. Fu , Giant flexoelectricity in polyvinylidene fluoride films. Phys. Lett. A 375 (2011) (2082).
DOI: 10.1016/j.physleta.2011.04.011
Google Scholar
[55]
A. G. Petrov, Flexoelectricity of model and living membranes, Biochim. Biophys. Acta 1561 (2002) 1.
Google Scholar
[56]
A. Y. Borisevich, E. A. Eliseev , A. N. Morozovska , C. J. Cheng , J. Y. Lin , Y. H. Chu, D. Kan , I. Takeuchi , V. Nagarajan , S. V. Kalinin , Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction, Nat. Commun. 3 (2012).
DOI: 10.1038/ncomms1778
Google Scholar
[57]
S. P. Alpay, I. B. Misirlioglu, V. Nagarajan, R. Ramesh, Can interface dislocations degrade ferroelectric properties?, Appl. Phys. Lett. 85 (2004) 2044.
DOI: 10.1063/1.1788894
Google Scholar
[58]
A. K. Tagantsev, G. Gerra, Interface-induced phenomena in polarization response of ferroelectric thin films, J. Appl. Phys. 100 (2006) 051607.
DOI: 10.1063/1.2337009
Google Scholar
[59]
M. W. Chu, I. Szafraniak , R. Scholz, C. Harnagea, D. Hesse , M. Alexe, U. Gosele, Impact of misfit dislocations on the polarization instability of epitaxial nanostructured ferroelectric perovskites, Nat. Mater. 3 (2004) 87.
DOI: 10.1038/nmat1057
Google Scholar
[60]
A. Gruverman , A. Kholkin , A. Kingon , H. Tokumoto, Asymmetric nanoscale switching in ferroelectric thin films by scanning force microscopy, Appl. Phys. Lett. 78 (2001) 2751.
DOI: 10.1063/1.1366644
Google Scholar
[61]
K. Abe, N. Yanase, T. Yasumoto, T. Kawakubo, Voltage shift phenomena in a heteroepitaxial BaTiO3 thin film capacitor, J. Appl. Phys. 91 (2002) 323.
DOI: 10.1063/1.1426249
Google Scholar
[62]
T. D. Nguyen, S. Mao, Y. Yeh, P. K. Purohit, and M. C. McAlpine, Nanoscale Flexoelectricity, Adv. Mater. 25 (2013) 946–974.
DOI: 10.1002/adma.201203852
Google Scholar
[63]
A. Kumar, C. Rinaldi, R. S. Katiyar, J. F. Scott, Strain induced artificial multiferroicity in Pb(Zr0. 53Ti0. 47)O3/Pb(Fe0. 66W0. 33)O3 layered nanostructure at ambient temperature", Recent Developments in Ferroelectric Nanostructures and Multilayers, J. Mater. Sci. 44 (2009).
DOI: 10.1007/s10853-009-3503-y
Google Scholar
[64]
S. H. Baek J. Park, D. M. Kim, V. A. Aksyuk et al, Giant Piezoelectricity on Si for Hyperactive MEMS, Science 334 (2011) 958.
Google Scholar
[65]
A. Gruverman, B. J. Rodriguez, A. I. Kingon, R. J. Nemanich, A. K. Tagantsev, J. S. Cross, M. Tsukada, Mechanical stress effect on imprint behavior of integrated ferroelectric Capacitors , Appl. Phys. Lett. 83 (2003) 728.
DOI: 10.1063/1.1593830
Google Scholar
[66]
J. F. Scott, C. A. Paz de Araujo , Ferroelectric Memories, Science 246 (1989) 1400.
Google Scholar
[67]
I. B. Misirlioglu, A. L. Vasiliev, M. Aindow, S. P. Alpay, Strong degradation of physical properties and formation of a dead layer in ferroelectric films due to interfacial dislocations, Integr. Ferroelectr. 71 (2005) 67.
DOI: 10.1080/10584580590964709
Google Scholar
[68]
L. W. Chang, M. McMillen, F. D. Morrison, J. F. Scott, J. M. Gregg, Size effects on thin film ferroelectrics: Experiments on isolated single crystal sheets, Appl. Phys. Lett. 93 (2008) 132904.
DOI: 10.1063/1.2990760
Google Scholar
[69]
R. Hull, J. C. Bean, L. J. Peticolas, B. E. Weir, K. Prabhakaran, T. Ogino, Misfit Dislocation Propagation Kinetics in GexSi1-x/Ge(100) Heterostructures, Appl. Phys. Letter. 65 (1994) 327.
DOI: 10.1063/1.113023
Google Scholar
[70]
J. Junquera, P. Ghosez, Critical thickness for ferroelectricity in perovskite ultrathin films, Nature 422 (2003) 506.
DOI: 10.1038/nature01501
Google Scholar
[71]
L. E. Cross, Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41 (2006) 53-63.
DOI: 10.1007/s10853-005-5916-6
Google Scholar
[72]
J. Y. Fu, W. Zhu, N. Li, , N. B. Smith, L. E. Cross, Gradient scaling phenomenon in microsize flexoelectric piezoelectric composites. Appl. Phys. Lett. 91 (2007) 182910.
DOI: 10.1063/1.2800794
Google Scholar
[73]
H. Kawai, The Piezoelectricity of Poly (vinylidene Fluoride), Jpn. J. Appl. Phys. 8 (1969) 975.
Google Scholar
[74]
M. Schulz, M. Marvan, Theory of flexoelectric effect of polymer glasses, Colloid Polym. Sci. 269 (1991) 553.
DOI: 10.1007/bf00659908
Google Scholar
[75]
J. Harden, M. Chambers, R. Verduzco, P. Luchette, J. T. Gleeson, S. Sprunt, A. Jakli , Giant flexoelectricity in bent-core nematic liquid crystal elastomers Appl. Phys. Lett. 96 (2010) 102907.
DOI: 10.1063/1.3358391
Google Scholar
[76]
S. Baskaran, X. He, Q. Chen, J. Y. Fu, Experimental studies on the direct flexoelectric effect in α-phase polyvinylidene fluoride films, Appl. Phys. Lett. 98 (2011) 242901.
DOI: 10.1063/1.3599520
Google Scholar
[77]
S. Poddar, Stephen Ducharme, Measurement of the flexoelectric response in ferroelectric and relaxor polymer thin films, Appl. Phys. Lett. 103 (2013) 202901.
DOI: 10.1063/1.4829622
Google Scholar
[78]
A. K. Tagantsev, Zh. Eksp. Teor. Fiz. Vegard strains and Flexoelectric effect 88 (1985) 2108.
Google Scholar
[79]
A. Jakli, Electro-mechanical effects in liquid crystals, Liq. Cryst. 37(6-7) (2010) 825-837.
Google Scholar
[80]
M. Marvan, A. Havranek , Static volume flexoelectric effect in a model of linear chains, Solid State Communications 101 (1997) 493-496.
DOI: 10.1016/s0038-1098(96)00623-0
Google Scholar