[1]
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Spintronics: A Spin-Based Electronics Vision for the Future, Science 294 (2001) 1488-1495.
DOI: 10.1126/science.1065389
Google Scholar
[2]
J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159 (1996) L1.
Google Scholar
[3]
L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54 (1996) 9353.
DOI: 10.1103/physrevb.54.9353
Google Scholar
[4]
J. C. Slonczewski, Excitation of spin waves by an electric curren, J. Magn. Magn. Mater. 159 (1999) 261–268.
Google Scholar
[5]
A. Slavin and V. Tiberkevich, Spin Wave Mode Excited by Spin-Polarized Current in a Magnetic Nanocontact is a Standing Self-Localized Wave Bullet, Phys. Rev. Lett. 95 (2005) 237201.
DOI: 10.1103/physrevlett.95.237201
Google Scholar
[6]
S.M. Mohseni, S.R. Sani, J. Persson, T.N.A. Nguyen, S. Chung, Ye. Pogoryelov, P.K. Muduli, E. Iacocca, A. Eklund, R.K. Dumas, S. Bonetti, A. Deac, M. Hoefer, and J. Åkerman, Spin Torque–Generated Magnetic Droplet Solitons, Science 339 (2013) 1295.
DOI: 10.1126/science.1230155
Google Scholar
[7]
Yan Zhou, E. Iacocca, R. K. Dumas, F. C. Zhang and Johan Åkerman, Magnetic droplet skyrmions, Nature Nanotechnology, under review, (2014). http: /arxiv. org/abs/1404. 3281.
Google Scholar
[8]
M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett. 61 (1988) 2472–2475.
DOI: 10.1103/physrevlett.61.2472
Google Scholar
[9]
G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39 (1989) 4828-4830.
DOI: 10.1103/physrevb.39.4828
Google Scholar
[10]
J. A. Katine, F. J. Albert, E. B. Myers, D. C. Ralph, and R. A. Buhrman, Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co /Cu /Co Pillars, Phys. Rev. Lett. 84 (2000) 3149.
DOI: 10.1103/physrevlett.84.3149
Google Scholar
[11]
S. Zhang, P. M. Levy, and A. Fert, Mechanisms of Spin-Polarized Current-Driven Magnetization Switching, Phys. Rev. Lett. 88 (2002) 236601.
DOI: 10.1103/physrevlett.88.236601
Google Scholar
[12]
J. Xiao, A. Zangwill, and M. D. Stiles. Boltzmann test of Slonczewski's theory of spin-transfer torque, Phys. Rev. B 70 (2004) 172405.
DOI: 10.1103/physrevb.70.172405
Google Scholar
[13]
M. D. Stiles and A. Zangwill, Anatomy of spin-transfer torque, Phys. Rev. B 66 (2002) 014407.
Google Scholar
[14]
A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil and A. Fert, Phase-locking of magnetic vortices mediated by antivortices, Phase-locking of magnetic vortices mediated by antivortices, Nat. Nanotechnol. 4 (2009).
DOI: 10.1038/nnano.2009.143
Google Scholar
[15]
V. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz and S. Demokritov, Magnetic nano-oscillator driven by pure spin current, Nat. Mater. 11 (2012) 1028.
DOI: 10.1038/nmat3459
Google Scholar
[16]
W. F. Brown, Jr., Thermal Fluctuations of a Single-Domain Particle, Phys. Rev. 130 (1963) 1677.
Google Scholar
[17]
J. Xiao, A. Zangwill, and M. D. Stiles, Macrospin models of spin transfer dynamics, Phys. Rev. B 72 (2005) 014446.
DOI: 10.1103/physrevb.72.014446
Google Scholar
[18]
W. Scholz, T. Schrefl, and J. Fidler, Micromagnetic simulation of thermally activated switching in fine particles, J. Magn. Magn. Mater. 233 (2001) 296.
DOI: 10.1016/s0304-8853(01)00032-4
Google Scholar
[19]
J. Fidler and T. Schrefl, Micromagnetic modelling-the current state of the art, J. Phys. D: Appl. Phys. 33 (2000) R135.
DOI: 10.1088/0022-3727/33/15/201
Google Scholar
[20]
S.K. Kang, Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements, J. Phys. D: Appl. Phys. 43 (2010) 264004.
DOI: 10.1088/0022-3727/43/26/264004
Google Scholar
[21]
Werner Scholz, http: /www. magpar. net.
Google Scholar
[22]
H. Fangohr and T. Fischbacher, NMAG. http: /nmag. soton. ac. uk/nmag.
Google Scholar
[23]
T. Valet, Spinflow3D. http: /www. insilicio. fr.
Google Scholar
[24]
M. Donahue, D. Porter, Object Oriented MicroMagnetic Framework (OOMMF). http: /math. nist. gov/oommf.
Google Scholar
[25]
M.R. Scheinfein, LLG Micromagnetics Simulator home page, 2003. http: /llgmicro. home. mindspring. com.
Google Scholar
[26]
D.V. Berkov, N.L. Gorn, MicroMagus home page, 2002. Available from http: /www. micromagus. de.
Google Scholar
[27]
A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez and B. V. Waeyenberge, The design and verification of MuMax3, AIP advances 4 (2014) 107133.
DOI: 10.1063/1.4899186
Google Scholar
[28]
Y. Zhou, Johan Åkerman, and J. Sun, Micromagnetic study of switching boundary of a spin torque nanodevice, Appl. Phys. Lett. 98 (2011) 102501.
DOI: 10.1063/1.3561753
Google Scholar
[29]
P. Wadhwa1, M. B. A. Jalil, and S. G. Tan, Micromagnetic modeling with eddy current and current-induced spin torque effect, J. Appl. Phys. 98 (2005) 123902.
DOI: 10.1063/1.2142077
Google Scholar
[30]
L. Torres, L. Lopez-Diaz, E. Martrinez, and O. Alejos, Micromagnetic dynamic computations including eddy currents, IEEE Trans. Magn. 39 (2003) 2498.
DOI: 10.1109/tmag.2003.816452
Google Scholar
[31]
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Observation of the spin Seebeck effect, Nature 455 (2008) 778.
DOI: 10.1038/nature07321
Google Scholar
[32]
K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa, E. Saitoh, Long-range spin Seebeck effect and acoustic spin pumping, Nature Materials, 10 (2011) 737.
DOI: 10.1038/nmat3099
Google Scholar
[33]
W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, T. J. Silva, Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts, Phys. Rev. Lett. 92 (2004) 27201.
DOI: 10.1103/physrevb.70.100406
Google Scholar
[34]
P. M. Braganca, B. A. Gurney, B. AWilson, J. A. Katine, S. Maat and J. R. Childress, Nanoscale magnetic field detection using a spin torque oscillator, Nanotechnology 21 (2010) 235202.
DOI: 10.1088/0957-4484/21/23/235202
Google Scholar
[35]
A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. Djayaprawira, N. Watanabe and S. Yuasa, Spin-torque diode effect in magnetic tunnel junctions, Nature 438 (2005) 339.
DOI: 10.1038/nature04207
Google Scholar
[36]
O. V. Prokopenko, E. Bankowski, T. Meitzler, V. S. Tiberkevich and A. N. Slavin, Influence of Temperature on the Performance of a Spin-Torque Microwave Detector, IEEE Transactions on Magnetics 48 (2012) 3807.
DOI: 10.1109/tmag.2012.2197853
Google Scholar
[37]
S. Miwa, S. Ishibashi, H. Tomita, T. Nozaki, E. Tamura, K. Ando, N. Mizuochi, T. Saruya, H. Kubota, K. Yakushiji, T. Taniguchi, H. Imamura, A. Fukushima, S. Yuasa and Y. Suzuki, Highly sensitive nanoscale spin-torque diode, Nature Materials 13 (2014).
DOI: 10.1038/nmat3778
Google Scholar
[38]
S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio, P. Muduli, F. Mancoff, A. Slavin, and Johan Åkerman, Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-driven Nanocontacts, Phys. Rev. Lett. 105 (2010).
DOI: 10.1103/physrevlett.105.217204
Google Scholar
[39]
M. Madami, S. Bonetti, S. Tacchi, G. Carlotti, G. Gubbiotti, G. Consolo, F. B. Mancoff, M. A. Yar, and Johan Åkerman, Direct observation of a propagating spin wave induced by spin-transfer torque, Nature Nanotechnology 6 (2011) 635.
DOI: 10.1038/nnano.2011.140
Google Scholar
[40]
F. Macia, Andrew D. Kent and Frank C. Hoppensteadt, Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation, Nanotechnology 22 (2011) 095301.
DOI: 10.1088/0957-4484/22/9/095301
Google Scholar
[41]
J. Grollier, V. Cros and A. Fert, Synchronization of spin-transfer oscillators driven by stimulated microwave currents, Phys. Rev. B 73 (2006) 060409(R).
DOI: 10.1103/physrevb.73.060409
Google Scholar
[42]
M. Sharad, D. Fan, K. Roy, IEEE Transactions on Magnetics, Exploring Boolean and Non-Boolean Computing Applications of Spin Torque Devices, IEEE Transactions on Magnetics Communicated (2014).
DOI: 10.1109/iccad.2013.6691174
Google Scholar
[43]
N. Locatelli, A. Mizrahi, A. Accioly, D. Querlioz, J. -V. Kim, V. Cros, and J. Grollier, The 14th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), DOI: 10. 1109/CNNA. 2014. 6888659 (2014).
DOI: 10.1109/cnna.2014.6888659
Google Scholar
[44]
R.K. Dumas, E. Iacocca, S. Bonetti, S.R. Sani, S.M. Mohseni, J. Persson, and Johan Åkerman, Spin-Wave-Mode Coexistence on the Nanoscale: A Consequence of the Oersted-Field-Induced Asymmetric Energy Landscape, Phys. Rev. Letters 110 (2013) 257202.
DOI: 10.1103/physrevlett.110.257202
Google Scholar
[45]
N. Romming, C. Hanneken, M. Menzel, J. Bickel, B. Wolter, K. Von Bergmann, A. Kubetzka and R. Weisendanger, Writing and Deleting Single Magnetic Skyrmions, Science 341 (2013) 636.
DOI: 10.1126/science.1240573
Google Scholar
[46]
J. Sampaio, V. Cros, S. Rohart, A. Thiaville and A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol. 8 (2013) 839.
DOI: 10.1038/nnano.2013.210
Google Scholar
[47]
J. Iwasaki, M. Mochizuki and N. Nagaosa, Current-induced skyrmion dynamics in constricted geometries, Nat. Nanotechnol. 8 (2013) 742.
DOI: 10.1038/nnano.2013.176
Google Scholar
[48]
Y. Zhou, M. Ezawa, A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry, Nature Communications 5 (2014) 4652.
DOI: 10.1038/ncomms5652
Google Scholar
[49]
Y. Zhou, E. Iacocca, A. Awad, R. K. Dumas, F. C. Zhang, and J. Åkerman, Dynamical Magnetic Skyrmions, Nature Nanotechnology Communicated (2014).
Google Scholar
[50]
S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, J. A. Katine, Mutual phase-locking of microwave spin torque nano-oscillators, Nature 437 (2005) 389.
DOI: 10.1038/nature04035
Google Scholar
[51]
F. B. Mancoff, N. D. Rizzo, B. N. Engel, S. Tehrani, Phase-locking in double-point-contact spin-transfer devices, Nature 437 (2005) 393.
DOI: 10.1038/nature04036
Google Scholar
[52]
Li Dong, Yan Zhou, Zhou Chang-Song, J. Åkerman and Hu Bam-Bi, Multiple synchronization attractors of serially connected spin-torque nanooscillators, Phys. Rev. B. 86 (2012) 014418.
DOI: 10.1103/physrevb.86.014418
Google Scholar
[53]
Li Dong, Yan Zhou, Zhou Chang-Song, and Hu Bam-Bi, Coupled perturbed heteroclinic cycles: Synchronization and dynamical behaviors of spin-torque oscillators, Physical Review B 84 (2011) 104414.
DOI: 10.1103/physrevb.84.104414
Google Scholar
[54]
Li Dong, Yan Zhou, Zhou Chang-Song, and Hu Bam-Bi, Global attractors and the difficulty of synchronizing serial spin-torque oscillators, Physical Review B 82 (2010) 140407(R).
DOI: 10.1103/physrevb.82.140407
Google Scholar
[55]
Yan Zhou, J. Persson, S. Bonetti and J. Åkerman, Tunable intrinsic phase of a spin torque oscillator, Applied Physics Letters, 92 (2008) 092505.
DOI: 10.1063/1.2891058
Google Scholar
[56]
Yan Zhou, J. Persson and J. Åkerman, Intrinsic phase shift between a spin torque oscillator and an alternating current, Journal of Applied Physics 101 (2007) 09A510.
DOI: 10.1063/1.2710740
Google Scholar
[57]
J. Persson, Yan Zhou and J. Åkerman, Phase-locked spin torque oscillators: Impact of device variability and time delay, J. of Appl. Phys. 101 (2007) 09A503.
DOI: 10.1063/1.2670045
Google Scholar
[58]
A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, F. Abreu Araujo, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators, Phys. Rev. B 85 (2012) 100409(R).
DOI: 10.1103/physrevb.85.100409
Google Scholar
[59]
A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, F. Abreu Araujo, K. A. Zvezdin, J. Grollier, V. Cros, and A. K. Zvezdin, Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators, Applied Physics Letters 103 (2013).
DOI: 10.1063/1.4821073
Google Scholar
[60]
Yan Zhou, Jiang Xiao, G. E. W. Bauer, and Fu-chun Zhang, Field-free synthetic-ferromagnet spin torque oscillator, Phys. Rev. B. 87 (2013) 020409(R).
DOI: 10.1103/physrevb.87.020409
Google Scholar
[61]
Yan Zhou, J. Åkerman, Perpendicular spin torque promotes synchronization of magnetic tunnel junction based spin torque oscillators, Applied Physics Letters 94 (2009) 112503.
DOI: 10.1063/1.3100299
Google Scholar
[62]
Yan Zhou, S. Bonetti, J. Persson, and J. Åkerman, Capacitance Enhanced Synchronization of Pairs of Spin-Transfer Oscillators, IEEE Trans. Magn. 45 (2009) 2421.
DOI: 10.1109/tmag.2009.2018595
Google Scholar
[63]
Yan Zhou, Effect of the field-like spin torque on the switching current and switching speed of magnetic tunnel junction with perpendicularly magnetized free layers, J. of Appl. Phys. 109 (2011) 023916.
DOI: 10.1063/1.3530455
Google Scholar
[64]
J. Persson, Yan Zhou and J. Åkerman, Circuit for phase locked oscillators, Patent No. US8049567 B2 (2011).
Google Scholar
[65]
O. Redon, B. Dieny, and B. Rodmacq. Magnetic spin polarization and magnetization rotation device with memory and writing process, using such a device, U.S. Patent No. 6532164 B2 (2003).
Google Scholar
[66]
K. J. Lee, O. Redon, and B. Dieny. Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy, Appl. Phys. Lett. 86 (2005) 022505.
Google Scholar
[67]
D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J. -P. Michel, L. Prejbeanu-Buda, M. -C. Cyrille, O. Redon, and B. Dieny. Spin-torque oscillator using a perpendicular polarizer and a planar free layer, Nat. Mater. 6 (2007).
DOI: 10.1038/nmat1905
Google Scholar
[68]
J. Barnas, A. Fert, M. Gmitra, I. Weymann, and V. K. Dugaev. From giant magnetoresistance to current-induced switching by spin transfer, Phys. Rev. B 72 (2005) 024426.
DOI: 10.1103/physrevb.72.024426
Google Scholar
[69]
O. Boulle, V. Cros, J. Grollier, L. G. Pereira, C. Deranlot, F. Petroff, G. Faini, J. Barnas, and A. Fert. Shaped angular dependence of the spin-transfer torque and microwave generation without magnetic field, Nat. Phys. 3 (2007) 492.
DOI: 10.1038/nphys618
Google Scholar
[70]
V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman. Magnetic vortex oscillator driven by d. c. spin-polarized current, Nat. Phys. 3 (2007) 498.
DOI: 10.1038/nphys619
Google Scholar
[71]
Yan Zhou, J. Persson, S. Bonetti and J. Åkerman, Spin-torque oscillator with tilted fixed layer magnetization, Applied Physics Letters 92 (2008) 262508.
DOI: 10.1063/1.2955831
Google Scholar
[72]
Yan Zhou, C. L. Zha, S. Bonetti, J. Persson, and J. Åkerman, Microwave generation of tilted-polarizer spin torque oscillator, Journal of Applied Physics 105 (2009) 07D116.
DOI: 10.1063/1.3068429
Google Scholar
[73]
C. L. Zha, S. Bonetti, J. Persson, Yan Zhou and J. Åkerman, Pseudo-spin-valve with L10 (111)-oriented FePt fixed layer, Journal of Applied Physics 105 (2009) 07E910.
DOI: 10.1063/1.3072880
Google Scholar
[74]
Yan Zhou, S. Bonetti, C. L. Zha and J. Åkerman, Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer, New Journal of Physics 11 (2009) 103028.
DOI: 10.1088/1367-2630/11/10/103028
Google Scholar
[75]
Yan Zhou, H. Zhang, Y. W. Liu and J. Åkerman, Macrospin and micromagnetic studies of tilted polarizer spin-torque nano-oscillators, J. Appl. Phys. 112 (2012) 063903.
DOI: 10.1063/1.4752265
Google Scholar
[76]
N. Locatelli, V. Cros and J. Grollier, Spin-torque building blocks, Nature Materials 13 (2014) 11.
DOI: 10.1038/nmat3823
Google Scholar
[77]
Stephen E. Russek, William H. Rippard, Thomas Cecil, Ranko Heindl, http: /www. rvhfg. org/pdf/articles/45. pdf.
Google Scholar
[78]
J. V. Kim, Spin-Torque Oscillators, in: (Eds. ) R. E. Stamps and R. E. Camley, Solid State Physics 63 (2012) 218, Academic Press, (2012).
Google Scholar
[79]
A. N. Slavin, V. Tyberkevych, Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current, IEEE Transactions on Magnetics 45 (2009) 1875.
DOI: 10.1109/tmag.2008.2009935
Google Scholar
[80]
D. C. Ralph, M. D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320 (2008) 1190.
DOI: 10.1016/j.jmmm.2009.03.060
Google Scholar