Theory and Applications of Spin Torque Nano-Oscillator: A Brief Review

Article Preview

Abstract:

We present a brief review of spin torque nanooscillator, which has triggered extensive research interests in the field of nanomagnetism and applied spintronics in recent years. The underlying physical mechanism governing the spin torque nanooscillator is the spin momentum transfer effect, where the angular momentum of itinerant electrons can be passed to localized magnetic moments. The typical device architectures and design of spin torque nanooscillator have been reviewed in this paper, with a particular focus on potential applications of spin torque nanooscillator in the fields of nanotechnology, computing, and biotechnology.Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 232)

Pages:

147-167

Citation:

Online since:

June 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Spintronics: A Spin-Based Electronics Vision for the Future, Science 294 (2001) 1488-1495.

DOI: 10.1126/science.1065389

Google Scholar

[2] J. C. Slonczewski, Current-driven excitation of magnetic multilayers, J. Magn. Magn. Mater. 159 (1996) L1.

Google Scholar

[3] L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current, Phys. Rev. B 54 (1996) 9353.

DOI: 10.1103/physrevb.54.9353

Google Scholar

[4] J. C. Slonczewski, Excitation of spin waves by an electric curren, J. Magn. Magn. Mater. 159 (1999) 261–268.

Google Scholar

[5] A. Slavin and V. Tiberkevich, Spin Wave Mode Excited by Spin-Polarized Current in a Magnetic Nanocontact is a Standing Self-Localized Wave Bullet, Phys. Rev. Lett. 95 (2005) 237201.

DOI: 10.1103/physrevlett.95.237201

Google Scholar

[6] S.M. Mohseni, S.R. Sani, J. Persson, T.N.A. Nguyen, S. Chung, Ye. Pogoryelov, P.K. Muduli, E. Iacocca, A. Eklund, R.K. Dumas, S. Bonetti, A. Deac, M. Hoefer, and J. Åkerman, Spin Torque–Generated Magnetic Droplet Solitons, Science 339 (2013) 1295.

DOI: 10.1126/science.1230155

Google Scholar

[7] Yan Zhou, E. Iacocca, R. K. Dumas, F. C. Zhang and Johan Åkerman, Magnetic droplet skyrmions, Nature Nanotechnology, under review, (2014). http: /arxiv. org/abs/1404. 3281.

Google Scholar

[8] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, Phys. Rev. Lett. 61 (1988) 2472–2475.

DOI: 10.1103/physrevlett.61.2472

Google Scholar

[9] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange, Phys. Rev. B 39 (1989) 4828-4830.

DOI: 10.1103/physrevb.39.4828

Google Scholar

[10] J. A. Katine, F. J. Albert, E. B. Myers, D. C. Ralph, and R. A. Buhrman, Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co /Cu /Co Pillars, Phys. Rev. Lett. 84 (2000) 3149.

DOI: 10.1103/physrevlett.84.3149

Google Scholar

[11] S. Zhang, P. M. Levy, and A. Fert, Mechanisms of Spin-Polarized Current-Driven Magnetization Switching, Phys. Rev. Lett. 88 (2002) 236601.

DOI: 10.1103/physrevlett.88.236601

Google Scholar

[12] J. Xiao, A. Zangwill, and M. D. Stiles. Boltzmann test of Slonczewski's theory of spin-transfer torque, Phys. Rev. B 70 (2004) 172405.

DOI: 10.1103/physrevb.70.172405

Google Scholar

[13] M. D. Stiles and A. Zangwill, Anatomy of spin-transfer torque, Phys. Rev. B 66 (2002) 014407.

Google Scholar

[14] A. Ruotolo, V. Cros, B. Georges, A. Dussaux, J. Grollier, C. Deranlot, R. Guillemet, K. Bouzehouane, S. Fusil and A. Fert, Phase-locking of magnetic vortices mediated by antivortices, Phase-locking of magnetic vortices mediated by antivortices, Nat. Nanotechnol. 4 (2009).

DOI: 10.1038/nnano.2009.143

Google Scholar

[15] V. Demidov, S. Urazhdin, H. Ulrichs, V. Tiberkevich, A. Slavin, D. Baither, G. Schmitz and S. Demokritov, Magnetic nano-oscillator driven by pure spin current, Nat. Mater. 11 (2012) 1028.

DOI: 10.1038/nmat3459

Google Scholar

[16] W. F. Brown, Jr., Thermal Fluctuations of a Single-Domain Particle, Phys. Rev. 130 (1963) 1677.

Google Scholar

[17] J. Xiao, A. Zangwill, and M. D. Stiles, Macrospin models of spin transfer dynamics, Phys. Rev. B 72 (2005) 014446.

DOI: 10.1103/physrevb.72.014446

Google Scholar

[18] W. Scholz, T. Schrefl, and J. Fidler, Micromagnetic simulation of thermally activated switching in fine particles, J. Magn. Magn. Mater. 233 (2001) 296.

DOI: 10.1016/s0304-8853(01)00032-4

Google Scholar

[19] J. Fidler and T. Schrefl, Micromagnetic modelling-the current state of the art, J. Phys. D: Appl. Phys. 33 (2000) R135.

DOI: 10.1088/0022-3727/33/15/201

Google Scholar

[20] S.K. Kang, Micromagnetic computer simulations of spin waves in nanometre-scale patterned magnetic elements, J. Phys. D: Appl. Phys. 43 (2010) 264004.

DOI: 10.1088/0022-3727/43/26/264004

Google Scholar

[21] Werner Scholz, http: /www. magpar. net.

Google Scholar

[22] H. Fangohr and T. Fischbacher, NMAG. http: /nmag. soton. ac. uk/nmag.

Google Scholar

[23] T. Valet, Spinflow3D. http: /www. insilicio. fr.

Google Scholar

[24] M. Donahue, D. Porter, Object Oriented MicroMagnetic Framework (OOMMF). http: /math. nist. gov/oommf.

Google Scholar

[25] M.R. Scheinfein, LLG Micromagnetics Simulator home page, 2003. http: /llgmicro. home. mindspring. com.

Google Scholar

[26] D.V. Berkov, N.L. Gorn, MicroMagus home page, 2002. Available from http: /www. micromagus. de.

Google Scholar

[27] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez and B. V. Waeyenberge, The design and verification of MuMax3, AIP advances 4 (2014) 107133.

DOI: 10.1063/1.4899186

Google Scholar

[28] Y. Zhou, Johan Åkerman, and J. Sun, Micromagnetic study of switching boundary of a spin torque nanodevice, Appl. Phys. Lett. 98 (2011) 102501.

DOI: 10.1063/1.3561753

Google Scholar

[29] P. Wadhwa1, M. B. A. Jalil, and S. G. Tan, Micromagnetic modeling with eddy current and current-induced spin torque effect, J. Appl. Phys. 98 (2005) 123902.

DOI: 10.1063/1.2142077

Google Scholar

[30] L. Torres, L. Lopez-Diaz, E. Martrinez, and O. Alejos, Micromagnetic dynamic computations including eddy currents, IEEE Trans. Magn. 39 (2003) 2498.

DOI: 10.1109/tmag.2003.816452

Google Scholar

[31] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, E. Saitoh, Observation of the spin Seebeck effect, Nature 455 (2008) 778.

DOI: 10.1038/nature07321

Google Scholar

[32] K. Uchida, H. Adachi, T. An, T. Ota, M. Toda, B. Hillebrands, S. Maekawa, E. Saitoh, Long-range spin Seebeck effect and acoustic spin pumping, Nature Materials, 10 (2011) 737.

DOI: 10.1038/nmat3099

Google Scholar

[33] W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, T. J. Silva, Direct-current induced dynamics in Co90Fe10/Ni80Fe20 point contacts, Phys. Rev. Lett. 92 (2004) 27201.

DOI: 10.1103/physrevb.70.100406

Google Scholar

[34] P. M. Braganca, B. A. Gurney, B. AWilson, J. A. Katine, S. Maat and J. R. Childress, Nanoscale magnetic field detection using a spin torque oscillator, Nanotechnology 21 (2010) 235202.

DOI: 10.1088/0957-4484/21/23/235202

Google Scholar

[35] A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. Djayaprawira, N. Watanabe and S. Yuasa, Spin-torque diode effect in magnetic tunnel junctions, Nature 438 (2005) 339.

DOI: 10.1038/nature04207

Google Scholar

[36] O. V. Prokopenko, E. Bankowski, T. Meitzler, V. S. Tiberkevich and A. N. Slavin, Influence of Temperature on the Performance of a Spin-Torque Microwave Detector, IEEE Transactions on Magnetics 48 (2012) 3807.

DOI: 10.1109/tmag.2012.2197853

Google Scholar

[37] S. Miwa, S. Ishibashi, H. Tomita, T. Nozaki, E. Tamura, K. Ando, N. Mizuochi, T. Saruya, H. Kubota, K. Yakushiji, T. Taniguchi, H. Imamura, A. Fukushima, S. Yuasa and Y. Suzuki, Highly sensitive nanoscale spin-torque diode, Nature Materials 13 (2014).

DOI: 10.1038/nmat3778

Google Scholar

[38] S. Bonetti, V. Tiberkevich, G. Consolo, G. Finocchio, P. Muduli, F. Mancoff, A. Slavin, and Johan Åkerman, Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-driven Nanocontacts, Phys. Rev. Lett. 105 (2010).

DOI: 10.1103/physrevlett.105.217204

Google Scholar

[39] M. Madami, S. Bonetti, S. Tacchi, G. Carlotti, G. Gubbiotti, G. Consolo, F. B. Mancoff, M. A. Yar, and Johan Åkerman, Direct observation of a propagating spin wave induced by spin-transfer torque, Nature Nanotechnology 6 (2011) 635.

DOI: 10.1038/nnano.2011.140

Google Scholar

[40] F. Macia, Andrew D. Kent and Frank C. Hoppensteadt, Spin-wave interference patterns created by spin-torque nano-oscillators for memory and computation, Nanotechnology 22 (2011) 095301.

DOI: 10.1088/0957-4484/22/9/095301

Google Scholar

[41] J. Grollier, V. Cros and A. Fert, Synchronization of spin-transfer oscillators driven by stimulated microwave currents, Phys. Rev. B 73 (2006) 060409(R).

DOI: 10.1103/physrevb.73.060409

Google Scholar

[42] M. Sharad, D. Fan, K. Roy, IEEE Transactions on Magnetics, Exploring Boolean and Non-Boolean Computing Applications of Spin Torque Devices, IEEE Transactions on Magnetics Communicated (2014).

DOI: 10.1109/iccad.2013.6691174

Google Scholar

[43] N. Locatelli, A. Mizrahi, A. Accioly, D. Querlioz, J. -V. Kim, V. Cros, and J. Grollier, The 14th International Workshop on Cellular Nanoscale Networks and their Applications (CNNA), DOI: 10. 1109/CNNA. 2014. 6888659 (2014).

DOI: 10.1109/cnna.2014.6888659

Google Scholar

[44] R.K. Dumas, E. Iacocca, S. Bonetti, S.R. Sani, S.M. Mohseni, J. Persson, and Johan Åkerman, Spin-Wave-Mode Coexistence on the Nanoscale: A Consequence of the Oersted-Field-Induced Asymmetric Energy Landscape, Phys. Rev. Letters 110 (2013) 257202.

DOI: 10.1103/physrevlett.110.257202

Google Scholar

[45] N. Romming, C. Hanneken, M. Menzel, J. Bickel, B. Wolter, K. Von Bergmann, A. Kubetzka and R. Weisendanger, Writing and Deleting Single Magnetic Skyrmions, Science 341 (2013) 636.

DOI: 10.1126/science.1240573

Google Scholar

[46] J. Sampaio, V. Cros, S. Rohart, A. Thiaville and A. Fert, Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures, Nat. Nanotechnol. 8 (2013) 839.

DOI: 10.1038/nnano.2013.210

Google Scholar

[47] J. Iwasaki, M. Mochizuki and N. Nagaosa, Current-induced skyrmion dynamics in constricted geometries, Nat. Nanotechnol. 8 (2013) 742.

DOI: 10.1038/nnano.2013.176

Google Scholar

[48] Y. Zhou, M. Ezawa, A reversible conversion between a skyrmion and a domain-wall pair in a junction geometry, Nature Communications 5 (2014) 4652.

DOI: 10.1038/ncomms5652

Google Scholar

[49] Y. Zhou, E. Iacocca, A. Awad, R. K. Dumas, F. C. Zhang, and J. Åkerman, Dynamical Magnetic Skyrmions, Nature Nanotechnology Communicated (2014).

Google Scholar

[50] S. Kaka, M. R. Pufall, W. H. Rippard, T. J. Silva, S. E. Russek, J. A. Katine, Mutual phase-locking of microwave spin torque nano-oscillators, Nature 437 (2005) 389.

DOI: 10.1038/nature04035

Google Scholar

[51] F. B. Mancoff, N. D. Rizzo, B. N. Engel, S. Tehrani, Phase-locking in double-point-contact spin-transfer devices, Nature 437 (2005) 393.

DOI: 10.1038/nature04036

Google Scholar

[52] Li Dong, Yan Zhou, Zhou Chang-Song, J. Åkerman and Hu Bam-Bi, Multiple synchronization attractors of serially connected spin-torque nanooscillators, Phys. Rev. B. 86 (2012) 014418.

DOI: 10.1103/physrevb.86.014418

Google Scholar

[53] Li Dong, Yan Zhou, Zhou Chang-Song, and Hu Bam-Bi, Coupled perturbed heteroclinic cycles: Synchronization and dynamical behaviors of spin-torque oscillators, Physical Review B 84 (2011) 104414.

DOI: 10.1103/physrevb.84.104414

Google Scholar

[54] Li Dong, Yan Zhou, Zhou Chang-Song, and Hu Bam-Bi, Global attractors and the difficulty of synchronizing serial spin-torque oscillators, Physical Review B 82 (2010) 140407(R).

DOI: 10.1103/physrevb.82.140407

Google Scholar

[55] Yan Zhou, J. Persson, S. Bonetti and J. Åkerman, Tunable intrinsic phase of a spin torque oscillator, Applied Physics Letters, 92 (2008) 092505.

DOI: 10.1063/1.2891058

Google Scholar

[56] Yan Zhou, J. Persson and J. Åkerman, Intrinsic phase shift between a spin torque oscillator and an alternating current, Journal of Applied Physics 101 (2007) 09A510.

DOI: 10.1063/1.2710740

Google Scholar

[57] J. Persson, Yan Zhou and J. Åkerman, Phase-locked spin torque oscillators: Impact of device variability and time delay, J. of Appl. Phys. 101 (2007) 09A503.

DOI: 10.1063/1.2670045

Google Scholar

[58] A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, F. Abreu Araujo, J. Grollier, K. A. Zvezdin, V. Cros, and A. K. Zvezdin, Phase locking dynamics of dipolarly coupled vortex-based spin transfer oscillators, Phys. Rev. B 85 (2012) 100409(R).

DOI: 10.1103/physrevb.85.100409

Google Scholar

[59] A. D. Belanovsky, N. Locatelli, P. N. Skirdkov, F. Abreu Araujo, K. A. Zvezdin, J. Grollier, V. Cros, and A. K. Zvezdin, Numerical and analytical investigation of the synchronization of dipolarly coupled vortex spin-torque nano-oscillators, Applied Physics Letters 103 (2013).

DOI: 10.1063/1.4821073

Google Scholar

[60] Yan Zhou, Jiang Xiao, G. E. W. Bauer, and Fu-chun Zhang, Field-free synthetic-ferromagnet spin torque oscillator, Phys. Rev. B. 87 (2013) 020409(R).

DOI: 10.1103/physrevb.87.020409

Google Scholar

[61] Yan Zhou, J. Åkerman, Perpendicular spin torque promotes synchronization of magnetic tunnel junction based spin torque oscillators, Applied Physics Letters 94 (2009) 112503.

DOI: 10.1063/1.3100299

Google Scholar

[62] Yan Zhou, S. Bonetti, J. Persson, and J. Åkerman, Capacitance Enhanced Synchronization of Pairs of Spin-Transfer Oscillators, IEEE Trans. Magn. 45 (2009) 2421.

DOI: 10.1109/tmag.2009.2018595

Google Scholar

[63] Yan Zhou, Effect of the field-like spin torque on the switching current and switching speed of magnetic tunnel junction with perpendicularly magnetized free layers, J. of Appl. Phys. 109 (2011) 023916.

DOI: 10.1063/1.3530455

Google Scholar

[64] J. Persson, Yan Zhou and J. Åkerman, Circuit for phase locked oscillators, Patent No. US8049567 B2 (2011).

Google Scholar

[65] O. Redon, B. Dieny, and B. Rodmacq. Magnetic spin polarization and magnetization rotation device with memory and writing process, using such a device, U.S. Patent No. 6532164 B2 (2003).

Google Scholar

[66] K. J. Lee, O. Redon, and B. Dieny. Current-induced domain wall motion in a nanowire with perpendicular magnetic anisotropy, Appl. Phys. Lett. 86 (2005) 022505.

Google Scholar

[67] D. Houssameddine, U. Ebels, B. Delaet, B. Rodmacq, I. Firastrau, F. Ponthenier, M. Brunet, C. Thirion, J. -P. Michel, L. Prejbeanu-Buda, M. -C. Cyrille, O. Redon, and B. Dieny. Spin-torque oscillator using a perpendicular polarizer and a planar free layer, Nat. Mater. 6 (2007).

DOI: 10.1038/nmat1905

Google Scholar

[68] J. Barnas, A. Fert, M. Gmitra, I. Weymann, and V. K. Dugaev. From giant magnetoresistance to current-induced switching by spin transfer, Phys. Rev. B 72 (2005) 024426.

DOI: 10.1103/physrevb.72.024426

Google Scholar

[69] O. Boulle, V. Cros, J. Grollier, L. G. Pereira, C. Deranlot, F. Petroff, G. Faini, J. Barnas, and A. Fert. Shaped angular dependence of the spin-transfer torque and microwave generation without magnetic field, Nat. Phys. 3 (2007) 492.

DOI: 10.1038/nphys618

Google Scholar

[70] V. S. Pribiag, I. N. Krivorotov, G. D. Fuchs, P. M. Braganca, O. Ozatay, J. C. Sankey, D. C. Ralph, and R. A. Buhrman. Magnetic vortex oscillator driven by d. c. spin-polarized current, Nat. Phys. 3 (2007) 498.

DOI: 10.1038/nphys619

Google Scholar

[71] Yan Zhou, J. Persson, S. Bonetti and J. Åkerman, Spin-torque oscillator with tilted fixed layer magnetization, Applied Physics Letters 92 (2008) 262508.

DOI: 10.1063/1.2955831

Google Scholar

[72] Yan Zhou, C. L. Zha, S. Bonetti, J. Persson, and J. Åkerman, Microwave generation of tilted-polarizer spin torque oscillator, Journal of Applied Physics 105 (2009) 07D116.

DOI: 10.1063/1.3068429

Google Scholar

[73] C. L. Zha, S. Bonetti, J. Persson, Yan Zhou and J. Åkerman, Pseudo-spin-valve with L10 (111)-oriented FePt fixed layer, Journal of Applied Physics 105 (2009) 07E910.

DOI: 10.1063/1.3072880

Google Scholar

[74] Yan Zhou, S. Bonetti, C. L. Zha and J. Åkerman, Zero-field precession and hysteretic threshold currents in a spin torque nano device with tilted polarizer, New Journal of Physics 11 (2009) 103028.

DOI: 10.1088/1367-2630/11/10/103028

Google Scholar

[75] Yan Zhou, H. Zhang, Y. W. Liu and J. Åkerman, Macrospin and micromagnetic studies of tilted polarizer spin-torque nano-oscillators, J. Appl. Phys. 112 (2012) 063903.

DOI: 10.1063/1.4752265

Google Scholar

[76] N. Locatelli, V. Cros and J. Grollier, Spin-torque building blocks, Nature Materials 13 (2014) 11.

DOI: 10.1038/nmat3823

Google Scholar

[77] Stephen E. Russek, William H. Rippard, Thomas Cecil, Ranko Heindl, http: /www. rvhfg. org/pdf/articles/45. pdf.

Google Scholar

[78] J. V. Kim, Spin-Torque Oscillators, in: (Eds. ) R. E. Stamps and R. E. Camley, Solid State Physics 63 (2012) 218, Academic Press, (2012).

Google Scholar

[79] A. N. Slavin, V. Tyberkevych, Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current, IEEE Transactions on Magnetics 45 (2009) 1875.

DOI: 10.1109/tmag.2008.2009935

Google Scholar

[80] D. C. Ralph, M. D. Stiles, Spin transfer torques, J. Magn. Magn. Mater. 320 (2008) 1190.

DOI: 10.1016/j.jmmm.2009.03.060

Google Scholar