[1]
V. R. K. Murthy, S. Sundaram, and B. Vishwanathan, Microwave Materials, Narosa Publishing House, New Delhi, (1993).
Google Scholar
[2]
A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrites, J. Magn. Magn. Mater. 302 (2006) 429-435.
DOI: 10.1016/j.jmmm.2005.10.006
Google Scholar
[3]
C. Wang, L. Li, J. Zhou, X. Qi, and Z. Yue, High frequency magnetic properties of Co-Ti substituted barium ferrites prepared by modified chemical co-precipitation method, J. Mater. Sci: Materials in Electronics 13(12) (2002) 713-716.
DOI: 10.1016/s0304-8853(02)01058-2
Google Scholar
[4]
H. S. Cho and S. S. Kim, M-hexaferrite with planar magnetic anisotropy and their application to high frequency microwave absorbers, IEEE Trans Mag. 35(5) (1999) 3151-53.
DOI: 10.1109/20.801111
Google Scholar
[5]
S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura and R. Sato, M-type ferrite composite as a microwave absorber with wide band width in GHz, IEEE Trans Mag. 35(5) (1999) 3154-3156.
DOI: 10.1109/20.801112
Google Scholar
[6]
J. P. Jakubovics, Magnetism and Magnetic Materials, 2nd Ed. Institute of Materials, London, (1994).
Google Scholar
[7]
J. Smith and H. P. J. Wijn, Ferrites, Philips Technical Library, Eindhoven, Netherlands, 1959, 177–190.
Google Scholar
[8]
G. H. Jonker, H. P. J. Wijn and P.B. Braun, Ferroxplana- Ferrimagnetic oxides, Philips Tech. Rev. 18 (1956/57)145-154.
Google Scholar
[9]
S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura, Science 319 (5870) (2008)1643- 1346.
DOI: 10.1126/science.1154507
Google Scholar
[10]
T. Kimura, G. Lawes and A. P. Ramirez, Electric polarization rotation in a hexaferrite with long wavelength magnetic structures, Phys. Rev. Lett. 94 (2005)137201-137204.
DOI: 10.1103/physrevlett.94.137201
Google Scholar
[11]
Y. Bai, J. Zhou, Z. Gui, L. Li, Phase formation process, microstructure and magnetic properties of Y-type hexagonal ferrite prepared by citrate sol-gel auto-combustion method, Mater. Chem. Phys. 98(1) (2006) 66-70.
DOI: 10.1016/j.matchemphys.2005.08.067
Google Scholar
[12]
M. Obol, X. Zuo, C. Vittoria, Oriented Y-type hexaferrites for ferrite device, J. Appl. Phys. 91(10) (2002) 7616-7618.
DOI: 10.1063/1.1446113
Google Scholar
[13]
T. Nakamura, K. I. Hatakeyama, Complex permeability of polycrystalline hexagonal ferrites, IEEE Trans Mag. 36 (2000)3415-3417.
DOI: 10.1109/20.908844
Google Scholar
[14]
H. J. Kwon, J. Y. Shin, J. Y. Oh, The microwave absorbing and resonance phenomena of Y- type hexagonal ferrite microwave absorber, J. Appl. Phys. 75 (1994) 6109-6111.
DOI: 10.1063/1.355476
Google Scholar
[15]
M. Obol, C. Vittoria, Microwave permeability of Y- type hexaferrites in zero field, J. Appl. Phys. 94 (2003) 4013- 4017.
DOI: 10.1063/1.1601291
Google Scholar
[16]
M. Obol, C. Vittoria, Measurement of permeability of oriented Y-type hexaferrites, J. Magn. Magn. Mater. 265 (2003) 290-295.
DOI: 10.1016/s0304-8853(03)00277-4
Google Scholar
[17]
R.C. Puller, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science 57 (2012) 1191–1334.
DOI: 10.1016/j.pmatsci.2012.04.001
Google Scholar
[18]
T. Ogasawara, M. A. S. Oliveria, Microstructure and hysteresis curves of the barium hexaferrite fromcoprecipitation by organic agent, J. Magn. Magn. Mater. 217 (2000) 147-154.
DOI: 10.1016/s0304-8853(00)00080-9
Google Scholar
[19]
W. Zhong, W.P. Ding, N. Zhang, J.M. Hong, Q. J. Yan, Synthesis of ultrafine BaFe12O19 by Sol-gel technique. J. Magn. Magn. Mater. 168 (1997) 196-199.
DOI: 10.1016/s0304-8853(96)00664-6
Google Scholar
[20]
J. Huang, H. Zhuang and W. Li, Optimization of the microstructure of low-temperature combustion –synthesized barium ferrite powder, J. Magn. Magn. Mater. 256 (2003) 390-395.
DOI: 10.1016/s0304-8853(02)00973-3
Google Scholar
[21]
D. Makovec, A. Kosak, A. Znidarsic and M. Drofenik, Helium liquefier with superconducting magnet and helium, J. Magn. Magn. Mater. 289 (2005) 32–35.
Google Scholar
[22]
M. Obol and C. Vittoria, Magneticproperties of Co2Y-type hexaferrite particles oriented in a rotating field, IEEE Trans. Magn. 39 (2003) 3103–3105.
DOI: 10.1109/tmag.2003.816019
Google Scholar
[23]
A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978; DOI: http: /dx. doi. org/10. 1103/PhysRev. 56. 978.
DOI: 10.1103/physrev.56.978
Google Scholar
[24]
M. M. Haque, M. Huq, M. A. Hakim, Densification magnetic and dielectric behaviour of Mg- Cu-Zn ferrites, Mater. Chem. Phys. 112 (2008) 580-586.
DOI: 10.1016/j.matchemphys.2008.05.097
Google Scholar
[25]
Q. Song, Z. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals, J. Am. Chem. Soc. 126 (2004) 6164.
DOI: 10.1021/ja049931r
Google Scholar
[26]
R. B. Jotania, H. S. Virk, Y-type hexaferrites: structural, dielectric and magnetic properties, Solid State Phenomenon 189 (2012) 209-232.
DOI: 10.4028/www.scientific.net/ssp.189.209
Google Scholar
[27]
M. A. Ahmad, J. Elhiti, Electrical and dielectric properties of Zn0. 8Co0. 2Fe2O4, Physique III 5 (1995) 775.
Google Scholar
[28]
M. Snaikh, S. S. Bellard, B. K. Chougule, Temperature and frequency dependent dielectric properties of Zn substituted Li-Mg ferrites, J. Magn. Magn. Mater. 195 (1999) 384-390.
DOI: 10.1016/s0304-8853(99)00138-9
Google Scholar
[29]
M. A. Ahamad, J. Elhiti, E. I. Nimar, A. M. Amar, The ac electrical conductivity for Co- substituted SbNi ferrites, J. Magn. Magn. Mater. 152 (1996) 391-395.
Google Scholar
[30]
K. W. Wagner, Ann. Phys. 10 (1971) 1520.
Google Scholar
[31]
M. J. Iqbal and M. N. Ashiq, Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticle synthesized by co-precipitation method, Chem. Engg. J. 136 (2008) 383.
DOI: 10.1016/j.cej.2007.05.046
Google Scholar
[32]
J. C. Maxwell, A treatise on Electricity and magnetism, Oxford University Press, New York, 1 (1973) 828.
Google Scholar
[33]
C. G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at Audio-frequencies, Phys. Rev. 83 (1951) 121-124.
DOI: 10.1103/physrev.83.121
Google Scholar
[34]
S. A. Mazen, H. M. Zaki, AC conductivity of Li-Ge ferrite, J. Phys. D: Appl. Phys. 28(4) (1995) 609- 613.
DOI: 10.1088/0022-3727/28/4/002
Google Scholar
[35]
R.R. Heikes and W.D. Johnson, Mechanism of conduction in Li-substituted transition metal oxides, J. Chem. Phys. 26 (1957) 582-587.
DOI: 10.1063/1.1743350
Google Scholar
[36]
M. Hanesch, H. Stanjek and N. Petersen, Thermomagnetic measurements of soil iron minerals: the role of organic carbon, Geophysical Journal International 165(1) (2006) 53-61.
DOI: 10.1111/j.1365-246x.2006.02933.x
Google Scholar
[37]
R.S. DiPietro, H.G. Johnson, S.P. Bennett, T.J. Nummy, L.H. Lewis, D. Heiman, Determining Magnetic Nanoparticle Size Distributions from Thermomagnetic Measurements, Appl. Phys. Lett. 96 (2010) 222506; arXiv: 1005. 3252 [pdf].
DOI: 10.1063/1.3441411
Google Scholar
[38]
F. Tournus and A. Tamion, Comment on Determining magnetic nanoparticle size distributions from thermomagnetic measurements, Appl. Phys. Lett. 98 (2011) 216102; http: /dx. doi. org/10. 1063/1. 359349.
DOI: 10.1063/1.3593497
Google Scholar