Effect of Non-Ionic Surfactant Concentration on Microstructure, Magnetic and Dielectric Properties of Strontium-Copper Hexaferrite Powder

Article Preview

Abstract:

Strontium copper hexaferrite powder with composition Sr2Cu2Fe12O22 was synthesized in presence of a non-ionic surfactant Tween-80 using chemical co-precipitation route. The prepared samples were calcinated at 950 oC for 4 hrs in a furnace and then slowly cooled to room temperature to obtain Sr2Cu2Fe12O22 hexaferrite powder. The effect of surfactant concentration on phase formation, microstructure, magnetic and dielectric properties of Sr2Cu2Fe12O22 were investigated using XRD, SEM, TEM, VSM, dielectric and low field AC susceptibility measurement techniques. The XRD analysis reveals the formation of mixed phases of Y and M type hexaferrites. The synthesized samples exhibited magnetic properties typical for soft magnetic materials, with saturation magnetization typical for Y-type hexaferrites. The dielectric properties were studied within the frequency range 100 HZ to 2 MHz. SEM images show formation of non-uniform, spongy and porous structure. The low field AC susceptibility measurements indicate that formed Sr-Cu hexaferrite powder possesses ferrimagnetic to paramagnetic transition at Curie temperature.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 232)

Pages:

93-110

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. R. K. Murthy, S. Sundaram, and B. Vishwanathan, Microwave Materials, Narosa Publishing House, New Delhi, (1993).

Google Scholar

[2] A. Ghasemi, A. Hossienpour, A. Morisako, A. Saatchi, and M. Salehi, Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrites, J. Magn. Magn. Mater. 302 (2006) 429-435.

DOI: 10.1016/j.jmmm.2005.10.006

Google Scholar

[3] C. Wang, L. Li, J. Zhou, X. Qi, and Z. Yue, High frequency magnetic properties of Co-Ti substituted barium ferrites prepared by modified chemical co-precipitation method, J. Mater. Sci: Materials in Electronics 13(12) (2002) 713-716.

DOI: 10.1016/s0304-8853(02)01058-2

Google Scholar

[4] H. S. Cho and S. S. Kim, M-hexaferrite with planar magnetic anisotropy and their application to high frequency microwave absorbers, IEEE Trans Mag. 35(5) (1999) 3151-53.

DOI: 10.1109/20.801111

Google Scholar

[5] S. Sugimoto, S. Kondo, K. Okayama, H. Nakamura, D. Book, T. Kagotani, M. Homma, H. Ota, M. Kimura and R. Sato, M-type ferrite composite as a microwave absorber with wide band width in GHz, IEEE Trans Mag. 35(5) (1999) 3154-3156.

DOI: 10.1109/20.801112

Google Scholar

[6] J. P. Jakubovics, Magnetism and Magnetic Materials, 2nd Ed. Institute of Materials, London, (1994).

Google Scholar

[7] J. Smith and H. P. J. Wijn, Ferrites, Philips Technical Library, Eindhoven, Netherlands, 1959, 177–190.

Google Scholar

[8] G. H. Jonker, H. P. J. Wijn and P.B. Braun, Ferroxplana- Ferrimagnetic oxides, Philips Tech. Rev. 18 (1956/57)145-154.

Google Scholar

[9] S. Ishiwata, Y. Taguchi, H. Murakawa, Y. Onose, Y. Tokura, Science 319 (5870) (2008)1643- 1346.

DOI: 10.1126/science.1154507

Google Scholar

[10] T. Kimura, G. Lawes and A. P. Ramirez, Electric polarization rotation in a hexaferrite with long wavelength magnetic structures, Phys. Rev. Lett. 94 (2005)137201-137204.

DOI: 10.1103/physrevlett.94.137201

Google Scholar

[11] Y. Bai, J. Zhou, Z. Gui, L. Li, Phase formation process, microstructure and magnetic properties of Y-type hexagonal ferrite prepared by citrate sol-gel auto-combustion method, Mater. Chem. Phys. 98(1) (2006) 66-70.

DOI: 10.1016/j.matchemphys.2005.08.067

Google Scholar

[12] M. Obol, X. Zuo, C. Vittoria, Oriented Y-type hexaferrites for ferrite device, J. Appl. Phys. 91(10) (2002) 7616-7618.

DOI: 10.1063/1.1446113

Google Scholar

[13] T. Nakamura, K. I. Hatakeyama, Complex permeability of polycrystalline hexagonal ferrites, IEEE Trans Mag. 36 (2000)3415-3417.

DOI: 10.1109/20.908844

Google Scholar

[14] H. J. Kwon, J. Y. Shin, J. Y. Oh, The microwave absorbing and resonance phenomena of Y- type hexagonal ferrite microwave absorber, J. Appl. Phys. 75 (1994) 6109-6111.

DOI: 10.1063/1.355476

Google Scholar

[15] M. Obol, C. Vittoria, Microwave permeability of Y- type hexaferrites in zero field, J. Appl. Phys. 94 (2003) 4013- 4017.

DOI: 10.1063/1.1601291

Google Scholar

[16] M. Obol, C. Vittoria, Measurement of permeability of oriented Y-type hexaferrites, J. Magn. Magn. Mater. 265 (2003) 290-295.

DOI: 10.1016/s0304-8853(03)00277-4

Google Scholar

[17] R.C. Puller, Hexagonal ferrites: A review of the synthesis, properties and applications of hexaferrite ceramics, Progress in Materials Science 57 (2012) 1191–1334.

DOI: 10.1016/j.pmatsci.2012.04.001

Google Scholar

[18] T. Ogasawara, M. A. S. Oliveria, Microstructure and hysteresis curves of the barium hexaferrite fromcoprecipitation by organic agent, J. Magn. Magn. Mater. 217 (2000) 147-154.

DOI: 10.1016/s0304-8853(00)00080-9

Google Scholar

[19] W. Zhong, W.P. Ding, N. Zhang, J.M. Hong, Q. J. Yan, Synthesis of ultrafine BaFe12O19 by Sol-gel technique. J. Magn. Magn. Mater. 168 (1997) 196-199.

DOI: 10.1016/s0304-8853(96)00664-6

Google Scholar

[20] J. Huang, H. Zhuang and W. Li, Optimization of the microstructure of low-temperature combustion –synthesized barium ferrite powder, J. Magn. Magn. Mater. 256 (2003) 390-395.

DOI: 10.1016/s0304-8853(02)00973-3

Google Scholar

[21] D. Makovec, A. Kosak, A. Znidarsic and M. Drofenik, Helium liquefier with superconducting magnet and helium, J. Magn. Magn. Mater. 289 (2005) 32–35.

Google Scholar

[22] M. Obol and C. Vittoria, Magneticproperties of Co2Y-type hexaferrite particles oriented in a rotating field, IEEE Trans. Magn. 39 (2003) 3103–3105.

DOI: 10.1109/tmag.2003.816019

Google Scholar

[23] A.L. Patterson, The Scherrer Formula for X-Ray Particle Size Determination, Phys. Rev. 56 (1939) 978; DOI: http: /dx. doi. org/10. 1103/PhysRev. 56. 978.

DOI: 10.1103/physrev.56.978

Google Scholar

[24] M. M. Haque, M. Huq, M. A. Hakim, Densification magnetic and dielectric behaviour of Mg- Cu-Zn ferrites, Mater. Chem. Phys. 112 (2008) 580-586.

DOI: 10.1016/j.matchemphys.2008.05.097

Google Scholar

[25] Q. Song, Z. Zhang, Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals, J. Am. Chem. Soc. 126 (2004) 6164.

DOI: 10.1021/ja049931r

Google Scholar

[26] R. B. Jotania, H. S. Virk, Y-type hexaferrites: structural, dielectric and magnetic properties, Solid State Phenomenon 189 (2012) 209-232.

DOI: 10.4028/www.scientific.net/ssp.189.209

Google Scholar

[27] M. A. Ahmad, J. Elhiti, Electrical and dielectric properties of Zn0. 8Co0. 2Fe2O4, Physique III 5 (1995) 775.

Google Scholar

[28] M. Snaikh, S. S. Bellard, B. K. Chougule, Temperature and frequency dependent dielectric properties of Zn substituted Li-Mg ferrites, J. Magn. Magn. Mater. 195 (1999) 384-390.

DOI: 10.1016/s0304-8853(99)00138-9

Google Scholar

[29] M. A. Ahamad, J. Elhiti, E. I. Nimar, A. M. Amar, The ac electrical conductivity for Co- substituted SbNi ferrites, J. Magn. Magn. Mater. 152 (1996) 391-395.

Google Scholar

[30] K. W. Wagner, Ann. Phys. 10 (1971) 1520.

Google Scholar

[31] M. J. Iqbal and M. N. Ashiq, Physical and electrical properties of Zr-Cu substituted strontium hexaferrite nanoparticle synthesized by co-precipitation method, Chem. Engg. J. 136 (2008) 383.

DOI: 10.1016/j.cej.2007.05.046

Google Scholar

[32] J. C. Maxwell, A treatise on Electricity and magnetism, Oxford University Press, New York, 1 (1973) 828.

Google Scholar

[33] C. G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at Audio-frequencies, Phys. Rev. 83 (1951) 121-124.

DOI: 10.1103/physrev.83.121

Google Scholar

[34] S. A. Mazen, H. M. Zaki, AC conductivity of Li-Ge ferrite, J. Phys. D: Appl. Phys. 28(4) (1995) 609- 613.

DOI: 10.1088/0022-3727/28/4/002

Google Scholar

[35] R.R. Heikes and W.D. Johnson, Mechanism of conduction in Li-substituted transition metal oxides, J. Chem. Phys. 26 (1957) 582-587.

DOI: 10.1063/1.1743350

Google Scholar

[36] M. Hanesch, H. Stanjek and N. Petersen, Thermomagnetic measurements of soil iron minerals: the role of organic carbon, Geophysical Journal International 165(1) (2006) 53-61.

DOI: 10.1111/j.1365-246x.2006.02933.x

Google Scholar

[37] R.S. DiPietro, H.G. Johnson, S.P. Bennett, T.J. Nummy, L.H. Lewis, D. Heiman, Determining Magnetic Nanoparticle Size Distributions from Thermomagnetic Measurements, Appl. Phys. Lett. 96 (2010) 222506; arXiv: 1005. 3252 [pdf].

DOI: 10.1063/1.3441411

Google Scholar

[38] F. Tournus and A. Tamion, Comment on Determining magnetic nanoparticle size distributions from thermomagnetic measurements, Appl. Phys. Lett. 98 (2011) 216102; http: /dx. doi. org/10. 1063/1. 359349.

DOI: 10.1063/1.3593497

Google Scholar