Recent Advances in Application of Landau-Ginzburg Theory for Ferroelectric Superlattices

Article Preview

Abstract:

Ferroelectric superlattices with polarization perpendicular to the surface or interface are studied within the framework of the Landau-Ginzburg theory. An interface energy is introduced in the free energy to describe the effect of mixing and local polarization coupling at interface. Internal electric field is considered in the model. For superlattices grown on substrate, the influence of substrate on the properties of ferroelectric superlattices is required. This brief review is a sequel to the previous review article [1], which summarizes the recent development in Landau-Ginzburg theory developed for studying ferroelectric superlattices over approximately the last three years.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 232)

Pages:

169-195

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.H. Chew, Recent applications of Landau-Ginzburg theory to ferroelectric superlattices: A Review, in: Hardev Singh Virk & Wolfgang Kleeman (Eds. ), Ferroics and Multiferroics, Trans Tech Publishers, Switzerland, 2012: Solid State Phenomena, 189 (2012).

DOI: 10.4028/www.scientific.net/ssp.189.145

Google Scholar

[2] J.F. Scott, Ferroelectric memories, Springer, (2000).

Google Scholar

[3] M. Dawber, K. Rabe, J. Scott, Physics of thin-film ferroelectric oxides, Reviews of modern physics, 77 (2005) 1083.

DOI: 10.1103/revmodphys.77.1083

Google Scholar

[4] G. Rijnders, D.H. Blank, Materials science: Build your own superlattice, Nature, 433 (2005) 369-370.

DOI: 10.1038/433369a

Google Scholar

[5] A. -B. Posadas, M. Lippmaa, F.J. Walker, M. Dawber, C.H. Ahn, J. -M. Triscone, Growth and novel applications of epitaxial oxide thin films, in: K.M. Rabe, C.H. Ahn, J. -M. Triscone (Eds. ) Physics of ferroelectrics: A modern perspective, Springer, 2007, pp.219-304.

DOI: 10.1007/978-3-540-34591-6_6

Google Scholar

[6] D.G. Schlom, L. -Q. Chen, C. -B. Eom, K.M. Rabe, S.K. Streiffer, J. -M. Triscone, Strain tuning of ferroelectric thin films, Annu. Rev. Mater. Res., 37 (2007) 589-626.

DOI: 10.1146/annurev.matsci.37.061206.113016

Google Scholar

[7] N. Ortega, A. Kumar, O. Maslova, Y.I. Yuzyuk, J. Scott, R. Katiyar, Effect of periodicity and composition in artificial BaTiO3/(Ba, Sr) TiO3 superlattices, Physical Review B, 83 (2011) 144108.

DOI: 10.1590/1980-5373-mr-2018-0389

Google Scholar

[8] Y.I. Yuzyuk, R. Katiyar, V. Alyoshin, I. Zakharchenko, D. Markov, E. Sviridov, Stress relaxation in heteroepitaxial (Ba, Sr)TiO33/(001) MgO thin film studied by micro-Raman spectroscopy, Physical Review B, 68 (2003) 104104.

DOI: 10.1103/physrevb.68.104104

Google Scholar

[9] M. Dawber, E. Bousquet, New developments in artificially layered ferroelectric oxide superlattices, MRS bulletin, 38 (2013) 1048-1055.

DOI: 10.1557/mrs.2013.263

Google Scholar

[10] M. Dawber, C. Lichtensteiger, M. Cantoni, M. Veithen, P. Ghosez, K. Johnston, K. Rabe, J. -M. Triscone, Unusual behavior of the ferroelectric polarization in PbTiO3/SrTiO3 superlattices, Physical review letters, 95 (2005) 177601.

DOI: 10.1103/physrevlett.95.177601

Google Scholar

[11] A. Jiang, J. Scott, H. Lu, Z. Chen, Phase transitions and polarizations in epitaxial BaTiO3/SrTiO3 superlattices studied by second-harmonic generation, Journal of applied physics, 93 (2003) 1180-1185.

DOI: 10.1063/1.1533094

Google Scholar

[12] S. Rios, A. Ruediger, A. Jiang, J. Scott, H. Lu, Z. Chen, Orthorhombic strontium titanate in BaTiO3–SrTiO3 superlattices, Journal of Physics: Condensed Matter, 15 (2003) L305.

DOI: 10.1088/0953-8984/15/21/101

Google Scholar

[13] K. Johnston, X. Huang, J. Neaton, K.M. Rabe, First-principles study of symmetry lowering and polarization in BaTiO3∕ SrTiO3 superlattices with in-plane expansion, Physical Review B, 71 (2005) 100103.

Google Scholar

[14] J. Belhadi, M. El Marssi, Y. Gagou, Y.I. Yuzyuk, I. Raevski, Giant increase of ferroelectric phase transition temperature in highly strained ferroelectric [BaTiO3]0. 7Λ/[BaZrO3]0. 3Λ superlattice, EPL (Europhysics Letters), 106 (2014) 17004.

DOI: 10.1209/0295-5075/106/17004

Google Scholar

[15] D.R. Tilley, Landau theory for coupled ferromagnetic and ferroelectric films and superlattices, Solid state communications, 65 (1988) 657.

DOI: 10.1016/0038-1098(88)90358-4

Google Scholar

[16] B.D. Qu, W.L. Zhong, R.H. Prince, Interfacial coupling in ferroelectric superlattices, Physical Review B, 55 (1997) 11218.

DOI: 10.1103/physrevb.55.11218

Google Scholar

[17] J. Shen, Y. -q. Ma, Long-range coupling interactions in ferroelectric superlattices, Physical Review B, 61 (2000) 14279.

DOI: 10.1103/physrevb.61.14279

Google Scholar

[18] Y. -q. Ma, J. Shen, X. -h. Xu, Coupling effects in ferroelectric superlattice, Solid State Communications, 114 (2000) 461.

DOI: 10.1016/s0038-1098(00)00081-8

Google Scholar

[19] J. Shen, Y. -q. Ma, Long-range coupling interactions in ferroelectric sandwich structures, Journal of Applied Physics, 89 (2001) 5031.

DOI: 10.1063/1.1359157

Google Scholar

[20] T. Harigai, D. Tanaka, H. Kakemoto, S. Wada, T. Tsurumi, Dielectric properties of BaTiO3/SrTiO3 superlattices measured with interdigital electrodes and electromagnetic field analysis, Journal of Applied Physics, 94 (2003) 7923.

DOI: 10.1063/1.1625780

Google Scholar

[21] P. Ghosez, J. Junquera, First-principles modeling of ferroelectric oxide nanostructures, in: M. Rieth, W. Schommers (Eds. ) Handbook of theoretical and computational nanotechnology, (2006).

Google Scholar

[22] J.B. Neaton, K.M. Rabe, Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices, Applied Physics Letters, 82 (2003) 1586-1588.

DOI: 10.1063/1.1559651

Google Scholar

[23] P. Aguado-Puente, P. García-Fernández, J. Junquera, Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices, Physical review letters, 107 (2011) 217601.

DOI: 10.1103/physrevlett.107.217601

Google Scholar

[24] P. Zubko, N. Jecklin, A. Torres-Pardo, P. Aguado-Puente, A. Gloter, C. Lichtensteiger, J. Junquera, O. Stéphan, J. -M. Triscone, Electrostatic coupling and local structural distortions at interfaces in ferroelectric/paraelectric superlattices, Nano letters, 12 (2012).

DOI: 10.1021/nl3003717

Google Scholar

[25] E. Specht, H. -M. Christen, D. Norton, L. Boatner, X-ray diffraction measurement of the effect of layer thickness on the ferroelectric transition in epitaxial KTaO3/KNbO3 multilayers, Physical review letters, 80 (1998) 4317.

DOI: 10.1103/physrevlett.80.4317

Google Scholar

[26] M. Sepliarsky, S. Phillpot, D. Wolf, M. Stachiotti, R. Migoni, Long-ranged ferroelectric interactions in perovskite superlattices, Physical Review B, 64 (2001) 060101.

DOI: 10.1103/physrevb.64.060101

Google Scholar

[27] V.A. Stephanovich, I.A. Luk'yanchuk, M.G. Karkut, Domain-enhanced interlayer coupling in ferroelectric/paraelectric superlattices, Physical Review Letters, 94 (2005) 047601.

DOI: 10.1103/physrevlett.94.047601

Google Scholar

[28] P. Aguado-Puente, J. Junquera, Structural and energetic properties of domains in PbTiO3/SrTiO3 superlattices from first principles, Physical Review B, 85 (2012) 184105.

Google Scholar

[29] A.L. Roytburd, S. Zhong, S.P. Alpay, Dielectric anomaly due to electrostatic coupling in ferroelectric-paraelectric bilayers and multilayers, Applied Physics Letters, 87 (2005) 092902.

DOI: 10.1063/1.2032601

Google Scholar

[30] S. Zhong, S.P. Alpay, J.V. Mantese, High dielectric tunability in ferroelectric-paraelectric bilayers and multilayer superlattices, Applied Physics Letters, 88 (2006) 132904.

DOI: 10.1063/1.2189909

Google Scholar

[31] S. Zhong, S.P. Alpay, A.L. Roytburd, J.V. Mantese, Interlayer coupling in ferroelectric bilayer and superlattice heterostructures, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on, 53 (2006) 2349.

DOI: 10.1109/tuffc.2006.183

Google Scholar

[32] M.T. Kesim, M.W. Cole, J. Zhang, I.B. Misirlioglu, S.P. Alpay, Tailoring dielectric properties of ferroelectric-dielectric multilayers, Applied Physics Letters, 104 (2014) 022901.

DOI: 10.1063/1.4861716

Google Scholar

[33] E. Chenskii, V. Tarasenko, Theory of phase transitions into inhomogeneous states in organic ferroelectrics in an external electric field, Zhurnal Experiment. Teor. Fiziki, 83 (1982) 1089-1099.

Google Scholar

[34] A.P. Levanyuk, I. Misirlioglu, Phase transitions in ferroelectric-paraelectric superlattices, Journal of Applied Physics, 110 (2011) 114109.

DOI: 10.1063/1.3662197

Google Scholar

[35] I.B. Misirlioglu, M.T. Kesim, S.P. Alpay, Strong dependence of dielectric properties on electrical boundary conditions and interfaces in ferroelectric superlattices, Applied Physics Letters, 104 (2014) 022906.

DOI: 10.1063/1.4862408

Google Scholar

[36] M. Dawber, N. Stucki, C. Lichtensteiger, S. Gariglio, P. Ghosez, J.M. Triscone, Tailoring the properties of artificially layered ferroelectric superlattices, Advanced Materials, 19 (2007) 4153-4159.

DOI: 10.1002/adma.200700965

Google Scholar

[37] P. Zubko, N. Stucki, C. Lichtensteiger, J. -M. Triscone, X-ray diffraction studies of 180 ferroelectric domains in PbTiO 3/SrTiO 3 superlattices under an applied electric field, Physical review letters, 104 (2010) 187601.

DOI: 10.1103/physrevlett.104.187601

Google Scholar

[38] T. Shimuta, O. Nakagawara, T. Makino, S. Arai, H. Tabata, T. Kawai, Enhancement of remanent polarization in epitaxial BaTiO3/SrTiO3 superlattices with asymmetric, structure, Journal of applied physics, 91 (2002) 2290-2294.

DOI: 10.1063/1.1434547

Google Scholar

[39] W. Tian, J. Jiang, X. Pan, J. Haeni, Y. Li, L. Chen, D. Schlom, J. Neaton, K. Rabe, Q. Jia, Structural evidence for enhanced polarization in a commensurate short-period BaTiO3/SrTiO3 superlattice, Applied physics letters, 89 (2006) 092905.

DOI: 10.1063/1.2335367

Google Scholar

[40] D. Tenne, A. Bruchhausen, N. Lanzillotti-Kimura, A. Fainstein, R. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J. Haeni, W. Tian, Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy, Science, 313 (2006) 1614-1616.

DOI: 10.1126/science.1130306

Google Scholar

[41] Y.I. Yuzyuk, R. Sakhovoy, O. Maslova, V. Shirokov, I. Zakharchenko, J. Belhadi, M. El Marssi, Phase transitions in BaTiO3 thin films and BaTiO3/BaZrO3 superlattices, Journal of Applied Physics, 116 (2014) 184102.

DOI: 10.1063/1.4901207

Google Scholar

[42] P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, J. -M. Triscone, Interface physics in complex oxide heterostructures, Annu. Rev. Condens. Matter Phys., 2 (2011) 141-165.

DOI: 10.1146/annurev-conmatphys-062910-140445

Google Scholar

[43] Y. Li, S.Y. Hu, D. Tenne, A. Soukiassian, D. Schlom, L. Chen, X. Xi, K. Choi, C. Eom, A. Saxena, Interfacial coherency and ferroelectricity of BaTiO3/SrTiO3 superlattice films, Applied Physics Letters, 91 (2007) 252904-252904-252903.

DOI: 10.1063/1.2823608

Google Scholar

[44] D. Lee, R.K. Behera, P. Wu, H. Xu, Y. Li, S.B. Sinnott, S.R. Phillpot, L. Chen, V. Gopalan, Mixed Bloch-Néel-Ising character of 180 ferroelectric domain walls, Physical Review B, 80 (2009) 060102.

DOI: 10.1103/physrevb.80.149904

Google Scholar

[45] A. Bruchhausen, A. Fainstein, A. Soukiassian, D. Schlom, X. Xi, M. Bernhagen, P. Reiche, R. Uecker, Ferroelectricity-induced coupling between light and terahertz-frequency acoustic phonons in BaTiO3/SrTiO3 superlattices, Physical review letters, 101 (2008).

DOI: 10.1103/physrevlett.101.197402

Google Scholar

[46] A. Torres-Pardo, A. Gloter, P. Zubko, N. Jecklin, C. Lichtensteiger, C. Colliex, J. -M. Triscone, O. Stéphan, Spectroscopic mapping of local structural distortions in ferroelectric PbTiO3/SrTiO3 superlattices at the unit-cell scale, Physical Review B, 84 (2011).

DOI: 10.1103/physrevb.84.220102

Google Scholar

[47] N.A. Pertsev, M. Tyunina, Interfacial nanolayers and permittivity of ferroelectric superlattices, Journal of Applied Physics, 109 (2011) 126101.

DOI: 10.1063/1.3596600

Google Scholar

[48] J. Sigman, D. Norton, H. Christen, P. Fleming, L. Boatner, Antiferroelectric behavior in symmetric KNbO3/KTaO3 superlattices, Physical review letters, 88 (2002) 097601.

Google Scholar

[49] E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J. -M. Triscone, P. Ghosez, Improper ferroelectricity in perovskite oxide artificial superlattices, Nature, 452 (2008) 732-736.

DOI: 10.1038/nature06817

Google Scholar

[50] H. Christen, E. Specht, D. Norton, M. Chisholm, L. Boatner, Long-range ferroelectric interactions in KTaO3/KNbO3 superlattice structures, Applied physics letters, 72 (1998) 2535-2537.

DOI: 10.1063/1.121411

Google Scholar

[51] X. Wu, K.M. Rabe, D. Vanderbilt, Interfacial enhancement of ferroelectricity in CaTiO3/BaTiO3 superlattices, Physical Review B, 83 (2011) 020104.

Google Scholar

[52] T. Hosokura, N. Iwaji, T. Nakagawa, A. Ando, H. Takagi, Y. Sakabe, K. Hirao, (100)-Oriented SrTiO3/BaTiO3 Artificial Superlattices Fabricated by Chemical Solution Deposition, Crystal Growth & Design, 11 (2011) 4253-4256.

DOI: 10.1021/cg200713c

Google Scholar

[53] T. Mizoguchi, H. Ohta, H.S. Lee, N. Takahashi, Y. Ikuhara, Controlling Interface Intermixing and Properties of SrTiO3‐Based Superlattices, Advanced Functional Materials, 21 (2011) 2258-2263.

DOI: 10.1002/adfm.201100230

Google Scholar

[54] T. Ohnishi, H. Koinuma, M. Lippmaa, Pulsed laser deposition of oxide thin films, Applied surface science, 252 (2006) 2466-2471.

DOI: 10.1016/j.apsusc.2005.04.057

Google Scholar

[55] D. Fong, C. Cionca, Y. Yacoby, G. Stephenson, J. Eastman, P. Fuoss, S. Streiffer, C. Thompson, R. Clarke, R. Pindak, Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron x-ray scattering measurements, Physical Review B, 71 (2005).

DOI: 10.1103/physrevb.71.144112

Google Scholar

[56] Y. Ishibashi, N. Ohashi, T. Tsurumi, Structural refinement of X-ray diffraction profile for artificial superlattices, Japanese Journal of Applied Physics, 39 (2000) 186.

DOI: 10.1143/jjap.39.186

Google Scholar

[57] C. -L. Hung, Y. -L. Chueh, T. -B. Wu, L. -J. Chou, Characteristics of constrained ferroelectricity in PbZrO3/BaZrO3 superlattice films, Journal of applied physics, 97 (2005) 034105-034105-034106.

DOI: 10.1063/1.1846133

Google Scholar

[58] J. Shin, A.Y. Borisevich, V. Meunier, J. Zhou, E.W. Plummer, S.V. Kalinin, A.P. Baddorf, Oxygen-induced surface reconstruction of SrRuO3 and its effect on the BaTiO3 interface, ACS nano, 4 (2010) 4190-4196.

DOI: 10.1021/nn1008337

Google Scholar

[59] V.R. Cooper, K. Johnston, K.M. Rabe, Polarization enhancement in short period superlattices via interfacial intermixing, Physical Review B, 76 (2007) 020103.

DOI: 10.1103/physrevb.76.020103

Google Scholar

[60] I.B. Misirlioglu, M. Alexe, L. Pintilie, D. Hesse, Space charge contribution to the apparent enhancement of polarization in ferroelectric bilayers and multilayers, Applied physics letters, 91 (2007) 022911.

DOI: 10.1063/1.2757127

Google Scholar

[61] A.M. Bratkovsky, A.P. Levanyuk, Ferroelectric phase transitions in films with depletion charge, Physical Review B, 61 (2000) 15042.

DOI: 10.1103/physrevb.61.15042

Google Scholar

[62] Y.Y. Liu, J.Y. Li, Space charges and size effects in semiconducting ferroelectric BaTiO3/SrTiO3 superlattices, Applied Physics Letters, 97 (2010) 042905.

DOI: 10.1063/1.3473821

Google Scholar

[63] Y. Liu, X. -p. Peng, Space Charge Effect on the Ferroelectricity in Epitaxial Ferroelectric–Paraelectric Superlattices, Applied Physics Express, 5 (2012) 011501.

DOI: 10.1143/apex.5.011501

Google Scholar

[64] M.B. Okatan, I.B. Misirlioglu, S.P. Alpay, Contribution of space charges to the polarization of ferroelectric superlattices and its effect on dielectric properties, Physical Review B, 82 (2010) 094115.

DOI: 10.1103/physrevb.82.094115

Google Scholar

[65] M. Gu, J. Wang, Q. Xie, X. Wu, Structural and electronic properties of PbTiO3/SrTiO3 superlattices from first principles, Physical Review B, 82 (2010) 134102.

Google Scholar

[66] N. Ortega, A. Kumar, O. Resto, O. Maslova, Y.I. Yuzyuk, J. Scott, R.S. Katiyar, Compositional engineering of BaTiO3/(Ba, Sr)TiO3 ferroelectric superlattices, Journal of Applied Physics, 114 (2013) 104102.

DOI: 10.1063/1.4820576

Google Scholar

[67] N. Ortega, A. Kumar, Y.I. Yuzyuk, J. Scott, R. Katiyar, Ferroelectric and Dielectric Properties of BaTiO3/Ba0. 30Sr0. 70TiO3 Superlattices, Integrated Ferroelectrics, 134 (2012) 139-145.

DOI: 10.1080/10584587.2012.673980

Google Scholar

[68] N. Ortega, A. Kumar, J. Scott, D.B. Chrisey, M. Tomazawa, S. Kumari, D. Diestra, R. Katiyar, Relaxor-ferroelectric superlattices: high energy density capacitors, Journal of Physics: Condensed Matter, 24 (2012) 445901.

DOI: 10.1088/0953-8984/24/44/445901

Google Scholar

[69] K. -H. Chew, Y. Ishibashi, F. G. Shin, A lattice model for ferroelectric superlattices, Journal of the Physical Society of Japan, 75 (2006).

Google Scholar

[70] Y. Ishibashi, M. Iwata, Landau-ginzburg theory of phase transition of ferroelectric superlattices, Ferroelectrics, 354 (2007) 8-12.

DOI: 10.1080/00150190701454420

Google Scholar

[71] K. -H. Chew, M. Iwata, F.G. Shin, Y. Ishibashi, Exact expressions for dielectric susceptibilities in the paraelectric phase of ferroelectric superlattices based on the ginzburg-landau theory, Integrated Ferroelectrics, 100 (2008) 79-87.

DOI: 10.1080/10584580802540413

Google Scholar

[72] K. -H. Chew, M. Iwata, F.G. Shin, Polarization modulation profiles in ferroelectric superlattices, Ferroelectric Letters, 36 (2009) 12-19.

DOI: 10.1080/07315170902938097

Google Scholar

[73] K. -H. Chew, L. -H. Ong, M. Iwata, Switching dynamics in ferroelectric superlattices, Current Applied Physics, 11 (2011) 755.

DOI: 10.1016/j.cap.2010.11.058

Google Scholar

[74] K. -H. Chew, L. -H. Ong, M. Iwata, Influence of dielectric stiffness, interface, and layer thickness on hysteresis loops of ferroelectric superlattices, Journal of Applied Physics, 110 (2011) 054108.

DOI: 10.1063/1.3630016

Google Scholar

[75] K. -H. Chew, Y. Ishibashi, F. G. Shin, H. LW Chan, Theory of interface structures in double-layer ferroelectrics, Journal of the Physical Society of Japan, 72 (2003) 2364-2368.

DOI: 10.1143/jpsj.72.2364

Google Scholar

[76] K. -G. Lim, K. -H. Chew, L. -H. Ong, M. Iwata, Electrostatic coupling and interface intermixing in ferroelectric superlattices, EPL (Europhysics Letters), 99 (2012) 46004.

DOI: 10.1209/0295-5075/99/46004

Google Scholar

[77] K. -H. Chew, K. -G. Lim, L. -H. Ong, M. Iwata, Influence of interface intermixing and periodicity on internal electric field and polarization in ferroelectric superlattices, Ceramics International, 39 (2013) S301-S305.

DOI: 10.1016/j.ceramint.2012.10.082

Google Scholar

[78] K. -G. Lim, K. -H. Chew, L. -H. Ong, M. Iwata, Modulated internal electric field, dielectric susceptibility and polarization in ferroelectric superlattices, Ceramics International, 39 (2013) S307-S310.

DOI: 10.1016/j.ceramint.2012.10.083

Google Scholar

[79] N. Pertsev, A. Tagantsev, N. Setter, Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films, Physical Review B, 61 (2000) R825.

DOI: 10.1103/physrevb.61.r825

Google Scholar

[80] K. -H. Chew, Y. Ishibashi, F. G. Shin, Ferroelectric hysteresis loops as the manifestation of interface-aided polarization reversals in heterostructures, Journal of the Physical Society of Japan, 74 (2005) 2338-2346.

DOI: 10.1143/jpsj.74.2338

Google Scholar

[81] M. Stengel, N.A. Spaldin, Origin of the dielectric dead layer in nanoscale capacitors, Nature, 443 (2006) 679-682.

DOI: 10.1038/nature05148

Google Scholar

[82] L.W. Chang, M. Alexe, J.F. Scott, J.M. Gregg, Settling the dead layer, debate in nanoscale capacitors, Advanced Materials, 21 (2009) 4911-4914.

DOI: 10.1002/adma.200901756

Google Scholar

[83] C. Ho Tsang, K. -H. Chew, Y. Ishibashi, F. G. Shin, Structure of interfaces in layered ferroelectrics of first and/or second order transition, Journal of the Physical Society of Japan, 73 (2004) 3158-3165.

DOI: 10.1143/jpsj.73.3158

Google Scholar

[84] M. Stengel, D. Vanderbilt, N.A. Spaldin, Enhancement of ferroelectricity at metal–oxide interfaces, Nature materials, 8 (2009) 392-397.

DOI: 10.1038/nmat2429

Google Scholar

[85] L.D. Landau, L. Pitaevskii, E. Lifshitz, Electrodynamics of continuous media, Butterworth-Heinemann, (1998).

Google Scholar

[86] D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson, Ferroelectricity in ultrathin perovskite films, Science, 304 (2004) 1650-1653.

DOI: 10.1126/science.1098252

Google Scholar

[87] M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials, Clarendon press Oxford, (1977).

Google Scholar

[88] K. -G. Lim, K. -H. Chew, L. -H. Ong, Hysteretic Internal Electric Fields and Polarization Reversal in Ferroelectric Superlattices, Ferroelectrics, 451 (2013) 41-47.

DOI: 10.1080/00150193.2013.838919

Google Scholar

[89] K. -G. Lim, K. -H. Chew, D. Wang, L. -H. Ong, M. Iwata, Charge compensation phenomena for polarization discontinuities in ferroelectric superlattices, EPL (Europhysics Letters), 108 (2014) 67011.

DOI: 10.1209/0295-5075/108/67011

Google Scholar