Mathematical Description of the Trajectory of Vessel Motion in Order to Determine Emission of Harmful Compounds in Exhaust Gases

Article Preview

Abstract:

The growing pressure from the society meant that pollution of the atmosphere by gases of marine engines has become one of the main problems in the protection of the marine environment recent years. Areas of ports like port city or coastal areas are exposed to the impact of pollution from the mainland as well as the considerable impact of harmful compounds contained in the exhaust gas of vessels. In order to determine the share of floating in air pollution and the prevention of the harmful effects of toxic compounds in the exhaust, it is necessary to value the knowledge of marine engines emissions of these compounds from the individual units. This is possible with knowledge of motion parameters of individuals, including their trajectory of motion, the concentrations of individual compounds for these parameters and atmospheric conditions in the region of their presence.The mathematical description of the trajectory of motion of the craft after any track (curve) as a first and essential step in modeling the total emissions of pollutants from internal combustion engines to marine main propulsion of vessels used in the balancing of the pollution is presented in this work.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 236)

Pages:

258-267

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Durkee P. A., Chartier R. E., Brown A., Trehubenko E. J.,. Rogerson S. D, Skupniewicz C., Nielsen K. E., Composite Ship Track Characteristics. Journal of the Atmospheric Sciences, Vol. 57, August (2000).

DOI: 10.1175/1520-0469(2000)057<2542:cstc>2.0.co;2

Google Scholar

[2] Heitmeyer R., Ship-Track Models Based on Poisson-Distributed Port-Depature Times. Naval Research Laboratory, Washington (2010).

Google Scholar

[3] Rojek B., Wawruch R., Ships routes and statistics of traffic in the Southern Baltic Sea. Zeszyty Naukowe Akademii Marynarki Wojennej w Gdyni, Nr 166, Gdynia, (2006).

DOI: 10.5604/0860889x.1172075

Google Scholar

[4] Solomon L.P., Barnes A.E., Lunsford C.R., Historical Temporal Shipping, Planning System Incorporated, (1978).

Google Scholar

[5] Panasiuk J., Balcerzak J., Pokrawska U., Wybrane zagadnienia z podstaw teorii odwzorowań kartograficznych. Politechnika Warszawska, Warszawa (1999).

Google Scholar

[6] Szpunar W., Podstawy geodezji wyższej, WNT, Warszawa (1982).

Google Scholar

[7] Piaseczny L. i inni., Modelowanie emisji związków szkodliwych pochodzących ze spalin okrętowych silników spalinowych w powietrzu atmosferycznym aglomeracji Trójmiasta. Sprawozdanie z projektu badawczego N502 009 31/1187, Gdynia (2009).

Google Scholar

[8] Kniaziewicz T., Modelowanie procesów emisji spalin okrętowych tłokowych silników spalinowych napędu głównego w rzeczywistych warunkach eksploatacji. Zeszyty Naukowe AMW, 2013, nr 193A.

Google Scholar

[9] Piaseczny L. i inni., Metody wyznaczania statycznych i dynamicznych charakterystyk emisji związków toksycznych z silników spalinowych statków morskich. Sprawozdanie z projektu badawczego N509 572839, Gdynia (2013).

Google Scholar

[10] Stieczkin S., Subbotin J., Splines in mathematica, Science, Moscow (1976).

Google Scholar

[11] Zawiałow J., Kwasow B., Splines methods, Science, Moscow (1980).

Google Scholar

[12] Zellma M., Załęska-Fornal A.,: Application of Basic Spline to the Identification of Sailing Object Equation,; Zeszyty Naukowe WSM, Szczecin, Nr 65, EXPLOSHIP 2002, s. 375-387.

Google Scholar