[1]
Stocker, M., Biofuels and biomass-to-liquid fuels in the biorefinery: catalytic conversion of lignocellulosic biomass using porous materials, Angewandte Chemie International Edition, Vol. 47, pp.9200-9211, (2008).
DOI: 10.1002/anie.200801476
Google Scholar
[2]
Damartzis, T., Zabaniotou A., Thermochemical conversion of biomass to second generation biofuels through integrated process design – A review, Renewable and Sustainable Energy Reviews, Vol. 15, pp.366-378, (2011).
DOI: 10.1016/j.rser.2010.08.003
Google Scholar
[3]
Sims, R.E.H., Mabee, W., Saddler, J.N., Taylor, M., An overview of second generation biofuels technologies, Bioresource Technology, Vol. 101, pp.1570-1580, (2010).
DOI: 10.1016/j.biortech.2009.11.046
Google Scholar
[4]
Suurs, R.A. A, Hekkert, M.P., Competition between first and second generation technologies: lessons from the formation of a biofuels innovation systems in the Netherlands, Energy, Vol. 34, pp.669-679, (2009).
DOI: 10.1016/j.energy.2008.09.002
Google Scholar
[5]
Knoef, H.A.M., Handbook of biomass gasification, Biomass Technology Group, (2005).
Google Scholar
[6]
Higman, C., van der Burgt, M., Gasification, Burlington, MA: Elsevier, (2003).
Google Scholar
[7]
Basu, P. Combustion and gasification in fluidized, CRC Press, Taylor and Francis, Boca Raton, USA, 2006, ISBN 0-8493-3396-2.
DOI: 10.1016/j.jhazmat.2006.05.114
Google Scholar
[8]
Zhong, Ch., Peters, C.J., de Swaan Arons, J., Thermodynamic modeling of biomass conversion processes, Fluid Phase Equilibria, Vol. 194-197, pp.805-815, (2002).
DOI: 10.1016/s0378-3812(01)00668-9
Google Scholar
[9]
van Thuijl, E., van Ree, R., de Lange, T.J., Biofuels production chains, Background document for modelling the EU biofuel market using the BIOTRANS model, European commission supported project: Clear Views on Clean Fuels (NNE5-2001-00619), (2003).
Google Scholar
[10]
Feng, W., van der Kooi, H, de Swaan Arons, J., Phase equilibria for biomass conversion processes in subcritical and supercritical water, Chemical Engineering Journal, Vol. 98, pp.105-113, (2004).
DOI: 10.1016/s1385-8947(03)00209-2
Google Scholar
[11]
Schuster, G., Loffler, G., Weigl, K., and Hofnauer, H., Biomass steam gasification-an extensive parametric modeling study, Bio-resource Technology, Vol. 77, pp.71-79, (2001).
DOI: 10.1016/s0960-8524(00)00115-2
Google Scholar
[12]
Babu, B. V, Chaurasia, A.S.: Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum, Energy Conversion and Management, Vol. 45, pp.9-10 and pp.1297-1327, (2004).
DOI: 10.1016/j.enconman.2003.09.013
Google Scholar
[13]
Koufopanos, C.A., Maschio, G., Lucchesi, A.: Kinetic modeling of the pyrolysis of biomass components, Canadian Journal of Chemical Engineering, Bol. 67, pp.75-84, (1989).
DOI: 10.1002/cjce.5450670111
Google Scholar
[14]
Basu, P., Kaushal, P.: Modeling of Pyrolysis and Gasification of Biomass in Fluidized Beds, Chemical Product and Process Modeling, Vol. 4, article 21, (2009).
DOI: 10.2202/1934-2659.1338
Google Scholar
[15]
ICTAC Nomenclature of Thermal Analysis, ICTAC News, Nr 37/2, pp.62-70, (2004).
Google Scholar
[16]
IUPAC Compendium of Chemical Terminology – the Gold Book, IUPAC, ver. 2. 3. 2, (2012).
Google Scholar