[1]
S. Agosteo, Overview of novel techniques for radiation protection and dosimetry, Radiat. Meas. 45 (2010) 1171-1177.
DOI: 10.1016/j.radmeas.2010.06.042
Google Scholar
[2]
P.K. Sarkar, Neutron dosimetry in the particle accelerator environment, Radiat. Meas. 45 (2010) 1476-1483.
Google Scholar
[3]
L. Tommasino, Recent trends in radioprotection dosimetry: Promising solutions for personal neutron dosimetry, Nucl. Instr. Meth. in Phys. Res. A 255 (1987) 293-297.
DOI: 10.1016/0168-9002(87)91118-1
Google Scholar
[4]
D.T. Bartlett, R.J. Tanner, D.J. Thomas, Active neutron personal dosemeters - A review of current status, Radiat. Prot. Dosim. 86 (1999) 107-122.
DOI: 10.1093/oxfordjournals.rpd.a032930
Google Scholar
[5]
G.F. Knoll, Radiation Detection and Measurement, 3rd ed. John Wiley & Sons (New York) (1999).
Google Scholar
[6]
D.J. Thomas, Neutron spectrometry for radiation protection, Radiat. Prot. Dosim. 110 (2004) 141-149.
Google Scholar
[7]
International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2–4), Elsevier (2007).
Google Scholar
[8]
F. Spurny, A.G. Molokanov, V.P. Bamblevski, Passive spectrometry of linear energy transfer: Development and use, Radiat. Prot. Dosim. 104 (2004) 675-679.
DOI: 10.1093/rpd/nch148
Google Scholar
[9]
G.S. Sahoo, S.P. Tripathy, S. Paul, S.D. Sharma, S.C. Sharma, D.S. Joshi, T. Bandyopadhyay, Neutron dose estimation via LET spectrometry using CR-39 detector for the reaction 9 Be (p, n). J. Med. Phys. 39 (2014) 225-230.
DOI: 10.4103/0971-6203.144487
Google Scholar
[10]
C. Sunil, T. Bandyopadhyay, M. Nandy, V. Suman, S. Paul, V. Nanal, R.G. Pillay, P.K. Sarkar, Thick target neutron yield from 145MeV 19F+27Al system, Nucl. Instrum. Meth. Phy. Res. A 721 (2013) 21-25.
DOI: 10.1016/j.nima.2013.04.039
Google Scholar
[11]
R. Bedogni, A. Esposito, A. Gentile, M. Angelone, M. Pillon, Comparing active and passive Bonner Sphere Spectrometers in the 2. 5 MeV quasi mono-energetic neutron field of the ENEA Frascati Neutron Generator (FNG), Radiat. Meas. 46 (2011).
DOI: 10.1016/j.radmeas.2011.09.002
Google Scholar
[12]
C. Sunil, A.A. Shanbhag, M. Nandy, T. Bandyopadhyaya, S.P. Tripathy, C. Lahiri, D.S. Joshi, P.K. Sarkar, Directional Distribution of the Ambient Neutron Dose Equivalent from 145 MeV 19F projectiles incident on thick Al target, Radiat. Prot. Dosim. 143 (2011).
DOI: 10.1093/rpd/ncq285
Google Scholar
[13]
J.D. Kinnison, R.H. Maurer, D. R. Roth, R.C. Haight, High-energy neutron spectroscopy with thick silicon detectors, Radiat. Res. 159 (2003) 154-160.
DOI: 10.1667/0033-7587(2003)159[0154:henswt]2.0.co;2
Google Scholar
[14]
M. Luszik-Bhadra, W. Wendt, M. Weierganz, The Electronic Neutron/Photon Dosemeter PTB DOS 2002, Radiat. Prot. Dosim. 110 (2004) 291-295.
DOI: 10.1093/rpd/nch180
Google Scholar
[15]
U.J. Schrewe, H.J. Brede, G. Dietze, Dosimetry in Mixed Neutron-Photon Fields with Tissue-Equivalent Proportional Counters, Radiat. Prot. Dosim. 29 (1989) 41-45.
DOI: 10.1093/oxfordjournals.rpd.a080528
Google Scholar
[16]
N.H. Lee, S.M. Lee, G.U. Youk, Mixed Field Dosimetry Using Semiconductor Dosimeters at an Extremely High Dose Area, IEEE Trans. on Nucl. Sci. 57 (2010) 1613-1617.
DOI: 10.1109/tns.2010.2046749
Google Scholar
[17]
R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids, Univ. of California Press, Berkely (USA) (1975).
Google Scholar
[18]
S.W.S. McKeever, Thermoluminescence of Solids, Cambridge University Press (UK) (1985).
Google Scholar
[19]
B. Mukherjee, D. Makowski, P. Krasinski, P. Cross, M. Grecki, S. Simrock, in: Proceedings of Mixed Design of Integrated Circuits and System (MIXDES), 19-21 June 2008 131-134.
DOI: 10.1109/mixdes.2006.1706545
Google Scholar
[20]
F. d'Errico, W.G. Alberts, G. Curzio, S. Guldbakke, H. Kluge, M. Matzke, Active Neutron Spectrometry with Superheated Drop (Bubble) Detectors, Radiat. Prot. Dosim. 61 (1995) 159-162.
DOI: 10.1093/rpd/61.1-3.159
Google Scholar
[21]
L. Tommasino, Damage track detectors in radioprotection dosimetry: A novel approach, Radiat. Meas. 31 (1999) 395-400.
DOI: 10.1016/s1350-4487(99)00107-9
Google Scholar
[22]
J.A. Caffrey, D.M. Hamby, A review of instruments and methods for dosimetry in space, Advances in Space Res. 47 (2011) 563-574.
DOI: 10.1016/j.asr.2010.10.005
Google Scholar
[23]
S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection, Pergamon Press (Oxford) (1987).
Google Scholar
[24]
R.C. Singh, M. Singh, H.S. Virk, Electrochemical etching technique for neutron dosimetry Indian J. of Pure & Applied Phys. 83 (2009) 827-832.
DOI: 10.1007/s12648-009-0035-x
Google Scholar
[25]
G.S. Sahoo, S.P. Tripathy, A.A. Shanbhag, C. Sunil, D.S. Joshi, P.K. Sarkar, Neutron measurement in 12, 13C+27Al system using CR-39 detectors and neutron rem meter, Indian J. of Pure & Applied Phys. 50 (2012) 513-516.
Google Scholar
[26]
R.K. Jain, H.S. Virk, R.J. Rao, S.K. Bose, Measuement of fast neutron induced fission cross section of Thorium using Lexan track detector, Pramana 49 (5) (1997) 515-519.
DOI: 10.1007/bf02875233
Google Scholar
[27]
R. Ilic, J. Rant, T. Sutej, M. Dobersek, E. Kristof, J. Skvarc, M. Kozelj, Investigations of the deuterium-deuterium fusion reaction in cast, annealed, and cold-rolled palladium, Fusion Technology 18 (1990) 505-511.
DOI: 10.13182/fst90-a29286
Google Scholar
[28]
H.S. Virk, R.C. Singh, Alternate approach to fast neutron dosimetry, Indian J. of Pure & Applied Phys. 32 (1994) 526-527.
Google Scholar
[29]
S. Paul, G.S. Sahoo, S.P. Tripathy, S.C. Sharma, Ramjilal, N.G. Ninawe, C. Sunil, A.K. Gupta, T. Bandyopadhyay, Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields, Rev. of Sci. Instrum. 85 (2014).
DOI: 10.1063/1.4880202
Google Scholar
[30]
G.S. Sahoo, S. Paul, S.P. Tripathy, S.C. Sharma, S. Jena, S. Rout, D.S. Joshi, T. Bandyopadhyay, Effects of neutron irradiation on optical and chemical properties of CR-39: Potential application in neutron dosimetry, Applied Radiation and Isotopes 94 (2014).
DOI: 10.1016/j.apradiso.2014.08.012
Google Scholar
[31]
S.P. Tripathy, R.V. Kolekar, C. Sunil, P.K. Sarkar, K.K. Dwivedi, D.N. Sharma, Microwave-induced chemical etching (MCE): A fast etching technique for the solid polymeric track detectors (SPTD), Nucl. Instrum. Meth. in Phys. Res. A 612 (2010).
DOI: 10.1016/j.nima.2009.10.096
Google Scholar
[32]
V. Chavan, P.C. Kalsi, V.K. Manchanda, A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD, Nucl. Instrum. Meth. in Phys. Res. A 629 (2011) 145-148.
DOI: 10.1016/j.nima.2010.12.020
Google Scholar
[33]
http: /www. nndc. bnl. gov/exfor/endf00jsp (last accessed 10. 10. 2014).
Google Scholar
[34]
B. Milenkovic, D. Nikezic, N. Stevanovic, A simulation of neutron interaction from Am-Be source with the CR-39 detector, Radiat. Meas. 45 (2010) 1338-1341.
Google Scholar
[35]
R.K. Jain, A.V. Prokofiev, A.N. Smirnov, L. Tommasino, Measurement of high Energy Neutrons by Fission Reactions, Radiat. Meas. 34 (2001) 129-132.
DOI: 10.1016/s1350-4487(01)00137-8
Google Scholar
[36]
D. Zhou, M. Cavaioli, R. K Jain, F. Spurny, R. Teodori, L. Tommasino, Bismuth-fission detectors for high energy nucleons: I. Registration characteristics, Radiat. Meas. 31 (1999) 455-458.
DOI: 10.1016/s1350-4487(99)00186-9
Google Scholar
[37]
C.N. Distenfield, The performance of a fission track dosimetry at the NGS, BNL-17452, (1973).
Google Scholar
[38]
W.G. Lynch, Nuclear fragmentation in proton-and heavy-ion-induced reactions, Annual Rev. Nucl. Part Sci. 37 (1987) 493-535.
DOI: 10.1146/annurev.ns.37.120187.002425
Google Scholar
[39]
L. Tommasino, R.K. Jain, D. O'Sullivan, A.V. Prokofiev, N.L. Singh, A.N. Smirnov, S.P. Tripathy, P. Viola, Cosmic-ray neutron spectrometry by solid state detectors, Radiat. Meas. 36 (2003) 307-311.
DOI: 10.1016/s1350-4487(03)00141-0
Google Scholar
[40]
W.J. Poyser, S.C. Ahern, J.W. Norbury, R.K. Tripathi, Calculation of the Coulomb Fission Cross Sections for Pb-Pb and Bi-Pb Interactions at 158 A GeV, NASA/TP-2002-211929, (2002).
Google Scholar
[41]
A.J. Jungerman, H.M. Steiner, Photofission Cross Sections of U235, U238, Th232, Bi209, and Au197 at Energies of 150 to 500 MeV, Phys. Rev. 106 (1957) 585-590.
Google Scholar
[42]
S.A. Durrani, The use of solid-state nuclear track detectors in radiation dosimetry, medicine and biology, Nucl. Tracks 6 (1982) 209-228.
DOI: 10.1016/0735-245x(82)90021-7
Google Scholar
[43]
J. Palfalvi, L. Sajo-Bohus, Use of SSNTDs in neutron beam dosimetry, Radiat. Meas. 28 (1997) 483-488.
DOI: 10.1016/s1350-4487(97)00125-x
Google Scholar
[44]
A. Mameli, F. Greco, A. Fidanzio, V. Fusco, S. Cilla, G. D'Onofrio, L. Grimaldi, B.G. Augelli, G. Giannini, R. Bevilacqua, P. Totaro, L. Tommasino, L. Azario, A. Piermattei, CR-39 detector based thermal neutron flux measurements, in the photo neutron project, Nucl. Instrum. Meth. in Phys. Res. B 266 (2008).
DOI: 10.1016/j.nimb.2008.05.122
Google Scholar
[45]
R. Bedogni, G. Gualdrini, A. Esposito, R. Mishra, S. Tripathy, Bedogni, G. Gualdrini, A. Esposito, R. Mishra, S. Tripathy, Radiat. Meas. 44 (2009) 972-976.
DOI: 10.1016/j.radmeas.2009.10.002
Google Scholar
[46]
M. Caresana, S. Agosteo, F. Campi, M. Ferrarini, A. Porta, M. Silari, Sensitivity study of CR39 track detector in an extended range bonner sphere spectrometer, Radiat. Prot. Dosim. 126 (2007) 310-313.
DOI: 10.1093/rpd/ncm064
Google Scholar
[47]
M. Reginatto, P. Goldhagen, MAXED, a computer code for the deconvolution of multisphere neutron spectrometer data using the maximum entropy method, EML-595, Environmental Measurements Laboratory (New York) (1998).
DOI: 10.2172/663223
Google Scholar
[48]
R. Bedogni, C. Domingo, A. Esposito, F. Fernandez, FRUIT: an operational tool for multisphere neutron spectrometry in workplaces, Nucl. Instrum. Meth. in Phys. Res. A 580 (2007) 1301-1309.
DOI: 10.1016/j.nima.2007.07.033
Google Scholar
[49]
K. A. Lowry, T.L. Johnson, Modification to iterative recursion unfolding algorithms and computer codes to find more appropriate neutron spectra, NRL Memorandum Report 5340, Naval Research Laboratory (Washington DC) (1984).
DOI: 10.1097/00004032-198410000-00006
Google Scholar
[50]
M. Tomás, F. Fernández, M. Bakali, H. Muller, MITOM: a new unfolding code based on a spectra model method applied to neutron spectrometry, Radiat. Prot. Dosim. 110 (2004) 545-548.
DOI: 10.1093/rpd/nch384
Google Scholar
[51]
M. Matzke, Unfolding of Pulse Height Spectra: The HEPRO Program System, PTB-N-19, PTB, Braunschweig (Germany) (1994).
Google Scholar
[52]
B. Mukherjee, ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra, Radiat. Prot. Dosim. 110 (2004) 249-254.
DOI: 10.1093/rpd/nch222
Google Scholar
[53]
V. Suman, P.K. Sarkar, Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation, Nucl. Instrum. Meth. in Phys. Res. A 737 (2014) 76-86.
Google Scholar
[54]
E.V. Benton, R.A. Oswald, A.L. Frank, R.V. Wheeler, Proton-recoil Neutron Dosimeter for Personnel Monitoring, Health Phys. 40 (1981) 801-809.
DOI: 10.1097/00004032-198106000-00002
Google Scholar
[55]
N.E. Ipe, Factors Affecting Track Registration Characteristics of CR-39 Polymer when Used as a Fast Neutron Detector, Ph.D. Thesis, Purdue University, West Lafayette, Indiana, (USA) (1984).
Google Scholar
[56]
F. d'Errico, M. Weiss, M. Luszik-bhadra, M. Matzke, L. Bernardi, A. Cecchi, Radiat. Meas. 28 (1997) 823-830.
DOI: 10.1016/s1350-4487(97)00191-1
Google Scholar
[57]
M. Luszik-bhadra, E. Dietz, F. d'Errico, S. Guldbakke, M. Matzke, Neutron spectrometry with CR-39 track detectors and silicon diodes using unfolding techniques, Radiat. Meas. 28 (1997) 473-478.
DOI: 10.1016/s1350-4487(97)00123-6
Google Scholar
[58]
D.E. García, H.R. Vega-Carrillo, L.G. Miramontes, L.E. McBride, Noniterative unfolding algorithm for neutron spectrum measurements with Bonner spheres, IEEE Trans. Nucl. Sci. 46 (1999) 28-35.
DOI: 10.1109/23.747764
Google Scholar
[59]
V. Mares, H. Schraube, Evaluation of the response matrix of a bonner sphere spectrometer with LiI detector from thermal-energy to 100 MeV, Nucl. Instrum. Meth. in Phys. Res. A 337 (1994) 461-473.
DOI: 10.1016/0168-9002(94)91116-9
Google Scholar
[60]
S. Serre, K. Castellani-Coulié, D. Paul, V. Lacoste, Optimization Using Monte Carlo Calculations of a Bonner Sphere Spectrometer Extended to High Energies for the Neutron Environments Characterization, IEEE Trans. Nucl. Sci. 56 (2009) 3582-3590.
DOI: 10.1109/tns.2009.2031141
Google Scholar
[61]
K. Biju, C. Sunil, S. P. Tripathy, D. S. Joshi, T. Bandyopadhyay, P. K. Sarkar, Selection of neutron-absorbing materials to improve the low-energy response of a Zr-based extended neutron monitor using Monte Carlo simulations, Radiat. Prot. Dosim. First published online (2014).
DOI: 10.1093/rpd/ncu176
Google Scholar
[62]
M. Králík, K. Turek, Characterisation of neutron fields around high-energy radiotherapy machines, Radiat. Prot. Dosim. 110 (2004) 503-507.
DOI: 10.1093/rpd/nch274
Google Scholar
[63]
R. Bedogni, E. Fantuzzi, Radiat. Prot. Dosim. 101 (2002) 183-186.
Google Scholar
[64]
A.R. El-Sersy, S.A. Eman, N.E. Khaled, Fast neutron spectroscopy using CR-39 track detectors, Nucl. Instrum. Meth. B 226 (2004) 345-350.
DOI: 10.1016/j.nimb.2004.06.023
Google Scholar
[65]
S. Paul, S.P. Tripathy, P.K. Sarkar, Analysis of 3-dimentional track parameters from 2-dimensional images of etched tracks in solid polymeric track detectors, Nucl. Instrum. Meth. in Phys. Res. A 690 (2012) 58-67.
DOI: 10.1016/j.nima.2012.06.054
Google Scholar
[66]
S. Paul, S.P. Tripathy, G.S. Sahoo, T. Bandyopadhyay, P.K. Sarkar, Measurement of fast neutron spectrum using CR-39 detectors and a new image analysis program (autoTRAK_n), Nucl. Instrum. Meth. in Phys. Res. A 729 (2013) 444-450.
DOI: 10.1016/j.nima.2013.07.083
Google Scholar
[67]
S.P. Tripathy, S. Paul, G.S. Sahoo, V. Suman, C. Sunil, D.S. Joshi, T. Bandyopadhyay, Measurement of fast neutron spectra from the interaction of 20MeV protons with thick Be and C targets using CR-39 detector, Nucl. Instrum. Meth. in Phys. Res. B 318 (2014).
DOI: 10.1016/j.nimb.2013.09.023
Google Scholar
[68]
http: /rsbweb. nih. gov/ij/, Image Processing and Analysis in Java, (last accessed 10. 10. 2014).
Google Scholar