Neutron Spectrometry and Dosimetry Using CR-39 Detectors

Article Preview

Abstract:

Solid polymeric track detectors (SPTDs), due to their insensitivity to low LET radiations and integrating nature of signal registration, are found to be effective and convenient for neutron measurements, particularly in pulsed and mixed radiation fields such as in particle accelerator environments. This paper in addition to reviewing some of the existing methods of neutron spectrometry and dosimetry, explores new approaches on the use of SPTDs for neutron measurements, elaborates on the extended energy response and rapid etching techniques of SPTDs along with some new results. Microwave induced chemical etching (MICE) technique, recently introduced for rapid and efficient processing of track detectors is discussed in the paper.Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 238)

Pages:

1-15

Citation:

Online since:

August 2015

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Agosteo, Overview of novel techniques for radiation protection and dosimetry, Radiat. Meas. 45 (2010) 1171-1177.

DOI: 10.1016/j.radmeas.2010.06.042

Google Scholar

[2] P.K. Sarkar, Neutron dosimetry in the particle accelerator environment, Radiat. Meas. 45 (2010) 1476-1483.

Google Scholar

[3] L. Tommasino, Recent trends in radioprotection dosimetry: Promising solutions for personal neutron dosimetry, Nucl. Instr. Meth. in Phys. Res. A 255 (1987) 293-297.

DOI: 10.1016/0168-9002(87)91118-1

Google Scholar

[4] D.T. Bartlett, R.J. Tanner, D.J. Thomas, Active neutron personal dosemeters - A review of current status, Radiat. Prot. Dosim. 86 (1999) 107-122.

DOI: 10.1093/oxfordjournals.rpd.a032930

Google Scholar

[5] G.F. Knoll, Radiation Detection and Measurement, 3rd ed. John Wiley & Sons (New York) (1999).

Google Scholar

[6] D.J. Thomas, Neutron spectrometry for radiation protection, Radiat. Prot. Dosim. 110 (2004) 141-149.

Google Scholar

[7] International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37 (2–4), Elsevier (2007).

Google Scholar

[8] F. Spurny, A.G. Molokanov, V.P. Bamblevski, Passive spectrometry of linear energy transfer: Development and use, Radiat. Prot. Dosim. 104 (2004) 675-679.

DOI: 10.1093/rpd/nch148

Google Scholar

[9] G.S. Sahoo, S.P. Tripathy, S. Paul, S.D. Sharma, S.C. Sharma, D.S. Joshi, T. Bandyopadhyay, Neutron dose estimation via LET spectrometry using CR-39 detector for the reaction 9 Be (p, n). J. Med. Phys. 39 (2014) 225-230.

DOI: 10.4103/0971-6203.144487

Google Scholar

[10] C. Sunil, T. Bandyopadhyay, M. Nandy, V. Suman, S. Paul, V. Nanal, R.G. Pillay, P.K. Sarkar, Thick target neutron yield from 145MeV 19F+27Al system, Nucl. Instrum. Meth. Phy. Res. A 721 (2013) 21-25.

DOI: 10.1016/j.nima.2013.04.039

Google Scholar

[11] R. Bedogni, A. Esposito, A. Gentile, M. Angelone, M. Pillon, Comparing active and passive Bonner Sphere Spectrometers in the 2. 5 MeV quasi mono-energetic neutron field of the ENEA Frascati Neutron Generator (FNG), Radiat. Meas. 46 (2011).

DOI: 10.1016/j.radmeas.2011.09.002

Google Scholar

[12] C. Sunil, A.A. Shanbhag, M. Nandy, T. Bandyopadhyaya, S.P. Tripathy, C. Lahiri, D.S. Joshi, P.K. Sarkar, Directional Distribution of the Ambient Neutron Dose Equivalent from 145 MeV 19F projectiles incident on thick Al target, Radiat. Prot. Dosim. 143 (2011).

DOI: 10.1093/rpd/ncq285

Google Scholar

[13] J.D. Kinnison, R.H. Maurer, D. R. Roth, R.C. Haight, High-energy neutron spectroscopy with thick silicon detectors, Radiat. Res. 159 (2003) 154-160.

DOI: 10.1667/0033-7587(2003)159[0154:henswt]2.0.co;2

Google Scholar

[14] M. Luszik-Bhadra, W. Wendt, M. Weierganz, The Electronic Neutron/Photon Dosemeter PTB DOS 2002, Radiat. Prot. Dosim. 110 (2004) 291-295.

DOI: 10.1093/rpd/nch180

Google Scholar

[15] U.J. Schrewe, H.J. Brede, G. Dietze, Dosimetry in Mixed Neutron-Photon Fields with Tissue-Equivalent Proportional Counters, Radiat. Prot. Dosim. 29 (1989) 41-45.

DOI: 10.1093/oxfordjournals.rpd.a080528

Google Scholar

[16] N.H. Lee, S.M. Lee, G.U. Youk, Mixed Field Dosimetry Using Semiconductor Dosimeters at an Extremely High Dose Area, IEEE Trans. on Nucl. Sci. 57 (2010) 1613-1617.

DOI: 10.1109/tns.2010.2046749

Google Scholar

[17] R.L. Fleischer, P.B. Price, R.M. Walker, Nuclear Tracks in Solids, Univ. of California Press, Berkely (USA) (1975).

Google Scholar

[18] S.W.S. McKeever, Thermoluminescence of Solids, Cambridge University Press (UK) (1985).

Google Scholar

[19] B. Mukherjee, D. Makowski, P. Krasinski, P. Cross, M. Grecki, S. Simrock, in: Proceedings of Mixed Design of Integrated Circuits and System (MIXDES), 19-21 June 2008 131-134.

DOI: 10.1109/mixdes.2006.1706545

Google Scholar

[20] F. d'Errico, W.G. Alberts, G. Curzio, S. Guldbakke, H. Kluge, M. Matzke, Active Neutron Spectrometry with Superheated Drop (Bubble) Detectors, Radiat. Prot. Dosim. 61 (1995) 159-162.

DOI: 10.1093/rpd/61.1-3.159

Google Scholar

[21] L. Tommasino, Damage track detectors in radioprotection dosimetry: A novel approach, Radiat. Meas. 31 (1999) 395-400.

DOI: 10.1016/s1350-4487(99)00107-9

Google Scholar

[22] J.A. Caffrey, D.M. Hamby, A review of instruments and methods for dosimetry in space, Advances in Space Res. 47 (2011) 563-574.

DOI: 10.1016/j.asr.2010.10.005

Google Scholar

[23] S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection, Pergamon Press (Oxford) (1987).

Google Scholar

[24] R.C. Singh, M. Singh, H.S. Virk, Electrochemical etching technique for neutron dosimetry Indian J. of Pure & Applied Phys. 83 (2009) 827-832.

DOI: 10.1007/s12648-009-0035-x

Google Scholar

[25] G.S. Sahoo, S.P. Tripathy, A.A. Shanbhag, C. Sunil, D.S. Joshi, P.K. Sarkar, Neutron measurement in 12, 13C+27Al system using CR-39 detectors and neutron rem meter, Indian J. of Pure & Applied Phys. 50 (2012) 513-516.

Google Scholar

[26] R.K. Jain, H.S. Virk, R.J. Rao, S.K. Bose, Measuement of fast neutron induced fission cross section of Thorium using Lexan track detector, Pramana 49 (5) (1997) 515-519.

DOI: 10.1007/bf02875233

Google Scholar

[27] R. Ilic, J. Rant, T. Sutej, M. Dobersek, E. Kristof, J. Skvarc, M. Kozelj, Investigations of the deuterium-deuterium fusion reaction in cast, annealed, and cold-rolled palladium, Fusion Technology 18 (1990) 505-511.

DOI: 10.13182/fst90-a29286

Google Scholar

[28] H.S. Virk, R.C. Singh, Alternate approach to fast neutron dosimetry, Indian J. of Pure & Applied Phys. 32 (1994) 526-527.

Google Scholar

[29] S. Paul, G.S. Sahoo, S.P. Tripathy, S.C. Sharma, Ramjilal, N.G. Ninawe, C. Sunil, A.K. Gupta, T. Bandyopadhyay, Measurement of neutron spectra generated from bombardment of 4 to 24 MeV protons on a thick 9Be target and estimation of neutron yields, Rev. of Sci. Instrum. 85 (2014).

DOI: 10.1063/1.4880202

Google Scholar

[30] G.S. Sahoo, S. Paul, S.P. Tripathy, S.C. Sharma, S. Jena, S. Rout, D.S. Joshi, T. Bandyopadhyay, Effects of neutron irradiation on optical and chemical properties of CR-39: Potential application in neutron dosimetry, Applied Radiation and Isotopes 94 (2014).

DOI: 10.1016/j.apradiso.2014.08.012

Google Scholar

[31] S.P. Tripathy, R.V. Kolekar, C. Sunil, P.K. Sarkar, K.K. Dwivedi, D.N. Sharma, Microwave-induced chemical etching (MCE): A fast etching technique for the solid polymeric track detectors (SPTD), Nucl. Instrum. Meth. in Phys. Res. A 612 (2010).

DOI: 10.1016/j.nima.2009.10.096

Google Scholar

[32] V. Chavan, P.C. Kalsi, V.K. Manchanda, A novel room temperature-induced chemical etching (RTCE) technique for the enlargement of fission tracks in Lexan polycarbonate SSNTD, Nucl. Instrum. Meth. in Phys. Res. A 629 (2011) 145-148.

DOI: 10.1016/j.nima.2010.12.020

Google Scholar

[33] http: /www. nndc. bnl. gov/exfor/endf00jsp (last accessed 10. 10. 2014).

Google Scholar

[34] B. Milenkovic, D. Nikezic, N. Stevanovic, A simulation of neutron interaction from Am-Be source with the CR-39 detector, Radiat. Meas. 45 (2010) 1338-1341.

Google Scholar

[35] R.K. Jain, A.V. Prokofiev, A.N. Smirnov, L. Tommasino, Measurement of high Energy Neutrons by Fission Reactions, Radiat. Meas. 34 (2001) 129-132.

DOI: 10.1016/s1350-4487(01)00137-8

Google Scholar

[36] D. Zhou, M. Cavaioli, R. K Jain, F. Spurny, R. Teodori, L. Tommasino, Bismuth-fission detectors for high energy nucleons: I. Registration characteristics, Radiat. Meas. 31 (1999) 455-458.

DOI: 10.1016/s1350-4487(99)00186-9

Google Scholar

[37] C.N. Distenfield, The performance of a fission track dosimetry at the NGS, BNL-17452, (1973).

Google Scholar

[38] W.G. Lynch, Nuclear fragmentation in proton-and heavy-ion-induced reactions, Annual Rev. Nucl. Part Sci. 37 (1987) 493-535.

DOI: 10.1146/annurev.ns.37.120187.002425

Google Scholar

[39] L. Tommasino, R.K. Jain, D. O'Sullivan, A.V. Prokofiev, N.L. Singh, A.N. Smirnov, S.P. Tripathy, P. Viola, Cosmic-ray neutron spectrometry by solid state detectors, Radiat. Meas. 36 (2003) 307-311.

DOI: 10.1016/s1350-4487(03)00141-0

Google Scholar

[40] W.J. Poyser, S.C. Ahern, J.W. Norbury, R.K. Tripathi, Calculation of the Coulomb Fission Cross Sections for Pb-Pb and Bi-Pb Interactions at 158 A GeV, NASA/TP-2002-211929, (2002).

Google Scholar

[41] A.J. Jungerman, H.M. Steiner, Photofission Cross Sections of U235, U238, Th232, Bi209, and Au197 at Energies of 150 to 500 MeV, Phys. Rev. 106 (1957) 585-590.

Google Scholar

[42] S.A. Durrani, The use of solid-state nuclear track detectors in radiation dosimetry, medicine and biology, Nucl. Tracks 6 (1982) 209-228.

DOI: 10.1016/0735-245x(82)90021-7

Google Scholar

[43] J. Palfalvi, L. Sajo-Bohus, Use of SSNTDs in neutron beam dosimetry, Radiat. Meas. 28 (1997) 483-488.

DOI: 10.1016/s1350-4487(97)00125-x

Google Scholar

[44] A. Mameli, F. Greco, A. Fidanzio, V. Fusco, S. Cilla, G. D'Onofrio, L. Grimaldi, B.G. Augelli, G. Giannini, R. Bevilacqua, P. Totaro, L. Tommasino, L. Azario, A. Piermattei, CR-39 detector based thermal neutron flux measurements, in the photo neutron project, Nucl. Instrum. Meth. in Phys. Res. B 266 (2008).

DOI: 10.1016/j.nimb.2008.05.122

Google Scholar

[45] R. Bedogni, G. Gualdrini, A. Esposito, R. Mishra, S. Tripathy, Bedogni, G. Gualdrini, A. Esposito, R. Mishra, S. Tripathy, Radiat. Meas. 44 (2009) 972-976.

DOI: 10.1016/j.radmeas.2009.10.002

Google Scholar

[46] M. Caresana, S. Agosteo, F. Campi, M. Ferrarini, A. Porta, M. Silari, Sensitivity study of CR39 track detector in an extended range bonner sphere spectrometer, Radiat. Prot. Dosim. 126 (2007) 310-313.

DOI: 10.1093/rpd/ncm064

Google Scholar

[47] M. Reginatto, P. Goldhagen, MAXED, a computer code for the deconvolution of multisphere neutron spectrometer data using the maximum entropy method, EML-595, Environmental Measurements Laboratory (New York) (1998).

DOI: 10.2172/663223

Google Scholar

[48] R. Bedogni, C. Domingo, A. Esposito, F. Fernandez, FRUIT: an operational tool for multisphere neutron spectrometry in workplaces, Nucl. Instrum. Meth. in Phys. Res. A 580 (2007) 1301-1309.

DOI: 10.1016/j.nima.2007.07.033

Google Scholar

[49] K. A. Lowry, T.L. Johnson, Modification to iterative recursion unfolding algorithms and computer codes to find more appropriate neutron spectra, NRL Memorandum Report 5340, Naval Research Laboratory (Washington DC) (1984).

DOI: 10.1097/00004032-198410000-00006

Google Scholar

[50] M. Tomás, F. Fernández, M. Bakali, H. Muller, MITOM: a new unfolding code based on a spectra model method applied to neutron spectrometry, Radiat. Prot. Dosim. 110 (2004) 545-548.

DOI: 10.1093/rpd/nch384

Google Scholar

[51] M. Matzke, Unfolding of Pulse Height Spectra: The HEPRO Program System, PTB-N-19, PTB, Braunschweig (Germany) (1994).

Google Scholar

[52] B. Mukherjee, ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra, Radiat. Prot. Dosim. 110 (2004) 249-254.

DOI: 10.1093/rpd/nch222

Google Scholar

[53] V. Suman, P.K. Sarkar, Neutron spectrum unfolding using genetic algorithm in a Monte Carlo simulation, Nucl. Instrum. Meth. in Phys. Res. A 737 (2014) 76-86.

Google Scholar

[54] E.V. Benton, R.A. Oswald, A.L. Frank, R.V. Wheeler, Proton-recoil Neutron Dosimeter for Personnel Monitoring, Health Phys. 40 (1981) 801-809.

DOI: 10.1097/00004032-198106000-00002

Google Scholar

[55] N.E. Ipe, Factors Affecting Track Registration Characteristics of CR-39 Polymer when Used as a Fast Neutron Detector, Ph.D. Thesis, Purdue University, West Lafayette, Indiana, (USA) (1984).

Google Scholar

[56] F. d'Errico, M. Weiss, M. Luszik-bhadra, M. Matzke, L. Bernardi, A. Cecchi, Radiat. Meas. 28 (1997) 823-830.

DOI: 10.1016/s1350-4487(97)00191-1

Google Scholar

[57] M. Luszik-bhadra, E. Dietz, F. d'Errico, S. Guldbakke, M. Matzke, Neutron spectrometry with CR-39 track detectors and silicon diodes using unfolding techniques, Radiat. Meas. 28 (1997) 473-478.

DOI: 10.1016/s1350-4487(97)00123-6

Google Scholar

[58] D.E. García, H.R. Vega-Carrillo, L.G. Miramontes, L.E. McBride, Noniterative unfolding algorithm for neutron spectrum measurements with Bonner spheres, IEEE Trans. Nucl. Sci. 46 (1999) 28-35.

DOI: 10.1109/23.747764

Google Scholar

[59] V. Mares, H. Schraube, Evaluation of the response matrix of a bonner sphere spectrometer with LiI detector from thermal-energy to 100 MeV, Nucl. Instrum. Meth. in Phys. Res. A 337 (1994) 461-473.

DOI: 10.1016/0168-9002(94)91116-9

Google Scholar

[60] S. Serre, K. Castellani-Coulié, D. Paul, V. Lacoste, Optimization Using Monte Carlo Calculations of a Bonner Sphere Spectrometer Extended to High Energies for the Neutron Environments Characterization, IEEE Trans. Nucl. Sci. 56 (2009) 3582-3590.

DOI: 10.1109/tns.2009.2031141

Google Scholar

[61] K. Biju, C. Sunil, S. P. Tripathy, D. S. Joshi, T. Bandyopadhyay, P. K. Sarkar, Selection of neutron-absorbing materials to improve the low-energy response of a Zr-based extended neutron monitor using Monte Carlo simulations, Radiat. Prot. Dosim. First published online (2014).

DOI: 10.1093/rpd/ncu176

Google Scholar

[62] M. Králík, K. Turek, Characterisation of neutron fields around high-energy radiotherapy machines, Radiat. Prot. Dosim. 110 (2004) 503-507.

DOI: 10.1093/rpd/nch274

Google Scholar

[63] R. Bedogni, E. Fantuzzi, Radiat. Prot. Dosim. 101 (2002) 183-186.

Google Scholar

[64] A.R. El-Sersy, S.A. Eman, N.E. Khaled, Fast neutron spectroscopy using CR-39 track detectors, Nucl. Instrum. Meth. B 226 (2004) 345-350.

DOI: 10.1016/j.nimb.2004.06.023

Google Scholar

[65] S. Paul, S.P. Tripathy, P.K. Sarkar, Analysis of 3-dimentional track parameters from 2-dimensional images of etched tracks in solid polymeric track detectors, Nucl. Instrum. Meth. in Phys. Res. A 690 (2012) 58-67.

DOI: 10.1016/j.nima.2012.06.054

Google Scholar

[66] S. Paul, S.P. Tripathy, G.S. Sahoo, T. Bandyopadhyay, P.K. Sarkar, Measurement of fast neutron spectrum using CR-39 detectors and a new image analysis program (autoTRAK_n), Nucl. Instrum. Meth. in Phys. Res. A 729 (2013) 444-450.

DOI: 10.1016/j.nima.2013.07.083

Google Scholar

[67] S.P. Tripathy, S. Paul, G.S. Sahoo, V. Suman, C. Sunil, D.S. Joshi, T. Bandyopadhyay, Measurement of fast neutron spectra from the interaction of 20MeV protons with thick Be and C targets using CR-39 detector, Nucl. Instrum. Meth. in Phys. Res. B 318 (2014).

DOI: 10.1016/j.nimb.2013.09.023

Google Scholar

[68] http: /rsbweb. nih. gov/ij/, Image Processing and Analysis in Java, (last accessed 10. 10. 2014).

Google Scholar