[1]
Council Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Official Journal of the European Union, 7. 11. 2013., L 296/12 – L 296/21.
Google Scholar
[2]
Council Directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/ Euratom. Official Journal of the European Union, 17. 1. 2014., L 13/1 – L 13/73.
DOI: 10.1093/oxfordjournals.rpd.a032482
Google Scholar
[3]
J. Znosko (ed. ), Tectonic atlas of Poland, Polish Geological Institute, Warsaw (1998).
Google Scholar
[4]
M. Narkiewicz, R. Dadlez, Geological regional subdivision of Poland – general guidelines and proposed schemes of sub-Cenozoic and sub-Permian units, Przegląd Geologiczny 56 (5) (2008) 391-397. (in Polish with English abstract).
Google Scholar
[5]
P. H. Karnkowski, Tectonic subdivision of Poland – Polish Lowlands, Przegląd Geologiczny 56 (10) (2008) 895-903. (in Polish with English abstract).
Google Scholar
[6]
S. Wołkowicz (ed. ), Radon potential of Sudetes with determination of potentially medicinal radon water areas, Polish Geological Institute, Warsaw (2007). (in Polish with English summary).
Google Scholar
[7]
T. A. Przylibski, Concentration of 226Ra in rocks of the southern part of Lower Silesia (SW Poland), Journal of Environmental Radioactivity 75 (2) (2004) 171-191.
DOI: 10.1016/j.jenvrad.2003.12.003
Google Scholar
[8]
J. B. Miecznik, R. Strzelecki, S. Wołkowicz, Uranium in Poland – history of prospecting and chances for finding new deposits, Przegląd Geologiczny 59 (10), (2011) 688-697. (in Polish with English abstract).
Google Scholar
[9]
A. Solecki, W. Śliwiński, I. Wojciechowska, D. Tchorz-Trzeciakiewicz, P. Syryczyński, M. Sadowska, B. Makowski, Assessment of possible occurrence of uranium mineralization in Poland based on results of geological and exploration work, Przegląd Geologiczny 59 (2), (2011).
Google Scholar
[10]
T. A. Przylibski, A. Żebrowski, M. Karpińska, J. Kapała, K. Kozak, J. Mazur, D. Grządziel, K. Mamont-Cieśla, O. Stawarz, B. Kozłowska, B. Kłos, J. Dorda, M. Wysocka, J. Olszewski, M. Dohojda, Mean annual 222Rn concentration in homes located in different geological regions of Poland – first approach to whole country area, Journal of Environmental Radioactivity 102 (2011).
DOI: 10.1016/j.jenvrad.2011.03.018
Google Scholar
[11]
K. Kozak, J. Mazur, B. Kozłowska, M. Karpińska, T. A. Przylibski, K. Mamont-Cieśla, D. Grządziel, O. Stawarz, M. Wysocka, J. Dorda, A. Żebrowski, J. Olszewski, H. Hovhannisyan, M. Dohojda, J. Kapała, I. Chmielewska, B. Kłos, J. Jankowski, S. Mnich, R. Kołodziej, Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon, Applied Radiation and Isotopes 69 (10) (2011).
DOI: 10.1016/j.apradiso.2011.05.018
Google Scholar
[12]
St. Chibowski, A. Komosa, Radon concentration in basements of old town buildings in the Lublin region, Poland, Journal of Radioanalytical and Nuclear Chemistry 247 (1) (2001) 53-56.
DOI: 10.1023/a:1006750628129
Google Scholar
[13]
M. Karpińska, Z. Mnich, J. Kapała, Seasonal changes in radon concentrations in buildings in the region of northeastern Poland, Journal of Environmental Radioactivity 77 (2004) 101-109.
DOI: 10.1016/j.jenvrad.2004.02.005
Google Scholar
[14]
M. Karpińska, Z. Mnich, J. Kapała, K. Antonowicz, M. Przestalski, Time changeability in radon concentration in one-family dwelling houses in the northeastern region of Poland, Radiation Protection Dosimetry 113 (3) (2005) 300-307.
DOI: 10.1093/rpd/nch459
Google Scholar
[15]
M. Műllerová, K. Kozak, T. Kovács, A. Csordás, D. Grzadziel, K. Holý, J. Mazur, A. Moravcsík, M. Neznal, M. Neznal, I. Smetanová, Preliminary results of indoor radon survey in V4 countries, Radiation Protection Dosimetry 160 (1-3) (2014) 210-213.
DOI: 10.1016/j.apradiso.2016.01.010
Google Scholar
[16]
J. Olszewski, J. Skubalski, Radon concentrations in selected residential buildings in the city of Łódź, Medycyna Pracy 62 (1) (2011) 31-36. (in Polish with English abstract).
Google Scholar
[17]
M. Wysocka, B. Kozłowska, J. Dorda, B. Kłos, I. Chmielewska, J. Rubin, M. Karpińska, M. Dohojda, Annual observations of radon activity concentrations in dwellings of Silesian Voivodeship, Nukleonika 55 (3) (2010) 369-375.
Google Scholar
[18]
M. Wysocka, S. Chalupnik, Correlation of radon concentration level with mining and geological conditions in Upper Silesia region, Journal of Mining Science 39 (2) (2003) 199-206.
DOI: 10.1023/b:jomi.0000008468.35224.6d
Google Scholar
[19]
M. Wysocka, A. Kotyrba, S. Chalupnik, J. Skowronek, Geophysical methods in radon risk studies, Journal of Environmental Radioactivity 82 (2005) 351-362.
DOI: 10.1016/j.jenvrad.2005.02.009
Google Scholar
[20]
M. Wysocka, A. Kotyrba, Radon mapping with the support of geophysical methods, Journal of Mining Science 47 (3) (2011) 330-337.
DOI: 10.1134/s1062739147030105
Google Scholar
[21]
T. A. Przylibski, W. Ciężkowski, Seasonal changes of radon concentration in the Niedźwiedzia Cave (SW Poland), Il Nuovo Cimento 22C (3-4) (1999) 463-469.
Google Scholar
[22]
T. A. Przylibski, Radon concentration changes in the air of two caves in Poland, Journal of Environmental Radioactivity 45 (1) (1999) 81-94.
DOI: 10.1016/s0265-931x(98)00081-2
Google Scholar
[23]
M. Wysocka, Radon in Jurassic caves of the Kraków-Częstochowa Upland, Geochemical Journal 45 (2011) 447-453.
DOI: 10.2343/geochemj.1.0142
Google Scholar
[24]
T. A. Przylibski, Radon in the air in the Millenium of the Polish State underground tourist route in Kłodzko (Lower Silesia), Archives of Environmental Protection 24 (2) (1998) 33-41.
Google Scholar
[25]
T. A. Przylibski, Changes in the concentration of radon-222 and its daughter products in the air of the underground tourist route in Walim (Lower Silesia), Archives of Environmental Protection 26 (3) (2000) 13-27.
Google Scholar
[26]
T. A. Przylibski, Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland), Journal of Environmental Radioactivity 57 (2) (2001) 87-103.
DOI: 10.1016/s0265-931x(01)00012-1
Google Scholar
[27]
D. Mazur, M. Janik, J. Łoskiewicz, P. Olko, J. Swakoń, Measurements of radon concentration in soil gas by CR-39 detectors, Radiation Measurements 31 (1999) 295-300.
DOI: 10.1016/s1350-4487(99)00135-3
Google Scholar
[28]
J. Swakoń, K. Kozak, M. Paszkowski, R. Gradziński, J. Łoskiewicz, J. Mazur, M. Janik, J. Bogacz, T. Horwacik, P. Olko, Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area, Journal of Environmental Radioactivity 78 (2005).
DOI: 10.1016/j.jenvrad.2004.04.004
Google Scholar
[29]
D. E. Tchorz-Trzeciakiewicz, A. T. Solecki, Atmospheric radon concentration around a phosphogypsum stack at Wislinka (northern Poland), Journal of Elementology 2 (2012) 317-328.
DOI: 10.5601/jelem.2012.17.2.13
Google Scholar
[30]
A. T. Solecki, R. Puchała, D. Tchorz, Radon and its decay product activities in the magmatic area of the Karkonosze Granite and the adjacent volcano-sedimentary Intrasudetic Basin, Annals of Geophysics 50 (4) (2007) 579-585.
DOI: 10.4401/ag-3071
Google Scholar
[31]
D. E. Tchorz-Trzeciakiewicz, A. T. Solecki, Seasonal variation of radon concentrations in atmospheric air in the Nowa Ruda area (Sudety Mountains) of southwest Poland, Geochemical Journal 45 (2011) 455-461.
DOI: 10.2343/geochemj.1.0149
Google Scholar
[32]
J. Olszewski, M. Chodak, J. Jankowski, An assay of the current exposure to radon of spa workers in Poland, Medycyna Pracy 59 (1) (2008) 35-38. (in Polish with English abstract).
Google Scholar
[33]
A. Podstawczyńska, K. Kozak, W. Pawlak, J. Mazur, Seasonal and diurnal variation of outdoor radon (222Rn) concentrations in urban and rural area with reference to meteorological conditions, Nukleonika 55 (4) (2010) 543-547.
Google Scholar
[34]
M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, A. Jeričević, Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe, Atmospheric Chemistry and Physics 14, (2014).
DOI: 10.5194/acp-14-9567-2014
Google Scholar
[35]
L. Fijałkowska-Lichwa, T. A. Przylibski, Short-term 222Rn activity concentration changes in underground spaces with limited air exchange with the atmosphere, Natural Hazards and Earth System Sciences 11, (2011). 1179-1188.
DOI: 10.5194/nhess-11-1179-2011
Google Scholar
[36]
L. Fijałkowska-Lichwa, Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno (Sudety Mts., SW Poland), Journal of Environmental Radioactivity 135, (2014) 25-35.
DOI: 10.1016/j.jenvrad.2014.03.014
Google Scholar
[37]
M. Wysocka, Radon in the investigations of geo-hazards in Polish collieries, Geofluids 10 (2010) 564-570.
DOI: 10.1111/j.1468-8123.2010.00306.x
Google Scholar
[38]
J. Kisiel, M. Budzanowski, J. Dorda, K. Kozak, J. Mazur, J. W. Mietelski, M. Puchalska, E. Tomankiewicz, A. Zalewska, Measurements of natural radioactivity in the salt cavern of the Polkowice-Sieroszowice copper mine, Acta Physica Polonica B 41 (7) (2010).
Google Scholar
[39]
T. A. Przylibski, J. Bartak, E. Kochowska, L. Fijałkowska-Lichwa, K. Kozak, J. Mazur, New SRDN-3 probes with a semi-conductor detector for measuring radon activity concentration in underground spaces, Journal of Radioanalytical and Nuclear Chemistry 285 (3) (2010).
DOI: 10.1007/s10967-010-0574-9
Google Scholar
[40]
T. A. Przylibski, K. Mamont-Cieśla, M. Kusyk, J. Dorda, B. Kozłowska, Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland), Journal of Environmental Radioactivity 75 (2) (2004) 193-209.
DOI: 10.1016/j.jenvrad.2003.12.004
Google Scholar
[41]
A. Walencik, B. Kozłowska, T. A. Przylibski, J. Dorda, W. Zipper, Natural radioactivity of groundwater from the Przerzeczyn-Zdrój Spa, Nukleonika 55 (2) (2010) 169-175.
Google Scholar
[42]
T. A. Przylibski, J. Gorecka, A. Kula, L. Fijałkowska-Lichwa, K. Zagożdżon, P. Zagożdżon, W. Miśta, R. Nowakowski, 222Rn and 226Ra activity concentrations in groundwaters of southern Poland: new data and selected genetic relations, Journal of Radioanalytical and Nuclear Chemistry 301 (3) (2014).
DOI: 10.1007/s10967-014-3215-x
Google Scholar
[43]
H. Bem, U. Plota, M. Staniszewska, E. M. Bem, D. Mazurek, Radon (222Rn) in underground drinking water supplies of the Southern Greater Poland Region, Journal of Radioanalytical and Nuclear Chemistry 299 (2014) 1307-1312.
DOI: 10.1007/s10967-013-2912-1
Google Scholar
[44]
B. Kozłowska, A. Walencik, T. A. Przylibski, J. Dorda, W. Zipper, Uranium, radium and radon isotopes in selected brines of Poland, Nukleonika 55 (4) (2010) 519-522.
DOI: 10.1016/j.radmeas.2007.03.004
Google Scholar
[45]
T. A. Przylibski, B. Kozłowska, J. Dorda, B. Kiełczawa, Radon-222 and 226Ra concentrations in mineralized groundwaters of Gorzanów (Kłodzko Basin, Sudeten Mountains, SW Poland), Journal of Radioanalytical and Nuclear Chemistry 253 (1) (2002).
DOI: 10.1023/a:1015891812671
Google Scholar
[46]
A. Komosa, E. Madej, M. Piekarz, Determination of a supported radon activity concentration in bottled mineral waters, Chemia Analityczna (Warsaw) 53 (2008) 835-843.
Google Scholar
[47]
B. Kozłowska, A. Walencik, J. Dorda, Natural radioactivity and dose estimation in underground water from the Sudety Mountains in Poland, Radiation Protection Dosimetry 128 (3) (2008) 331-335.
DOI: 10.1093/rpd/ncm380
Google Scholar
[48]
B. Kozłowska, A. Walencik, J. Dorda, W. Zipper, Radon in groundwater and dose estimation for inhabitants in Spas of the Sudety Mountain area, Poland, Applied Radiation and Isotopes 68 (2010) 854-857.
DOI: 10.1016/j.apradiso.2009.12.016
Google Scholar
[49]
T.A. Przylibski, J. Gorecka, 222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland), Journal of Environmental Radioactivity 134 (2014) 43-53.
DOI: 10.1016/j.jenvrad.2014.02.021
Google Scholar
[50]
T.A. Przylibski, A. Żebrowski, Origin of radon in medicinal waters of Lądek Zdrój (Sudety Mountains, SW Poland), Journal of Environmental Radioactivity 46 (1) (1999) 121-129.
DOI: 10.1016/s0265-931x(98)00116-7
Google Scholar
[51]
T.A. Przylibski, 222Rn concentration changes in medicinal groundwaters of Lądek Zdrój (Sudety Mountains, SW Poland), Journal of Environmental Radioactivity 48 (3) (2000) 327-347.
DOI: 10.1016/s0265-931x(99)00080-6
Google Scholar
[52]
T.A. Przylibski, K. Mroczkowski, A. Żebrowski, P. Filbier, Radon-222 in medicinal groundwaters of Szczawno Zdrój (Sudety Mountains, SW Poland), Environmental Geology 40 (4/5) (2001) 429-439.
DOI: 10.1007/s002540000231
Google Scholar
[53]
K. Mamont-Cieśla, O. Stawarz, M. Karpińska, J. Kapała, K. Kozak, D. Grządziel, S. Chałupnik, I. Chmielewska, J. Olszewski, T. A. Przylibski, A. Żebrowski, Intercomparison of radon CR-39 detector systems conducted in CLOR's calibration chamber, Nukleonika 55 (4) (2010).
DOI: 10.1016/j.apradiso.2011.05.018
Google Scholar
[54]
K. Kozak, B. Kozłowska, T. A. Przylibski, J. Mazur, A. Adamczyk-Lorenc, K. Mamont-Cieśla, O. Stawarz, J. Dorda, B. Kłos, M. Janik, E. Kochowska, Intercomparison measurements of 222Rn concentration in water samples in Poland, Radiation Measurements 47 (1) (2012).
DOI: 10.1016/j.radmeas.2011.10.018
Google Scholar
[55]
S. Chalupnik, J. Skowronek, J. Lebecka, K. Skubacz, M. Wysocka, B. Michalik, System of radiation hazard monitoring and control in the coal mines of Poland, Journal of Mining Science 38 (6) (2002) 587-595.
DOI: 10.1023/a:1024990310347
Google Scholar
[56]
T.A. Przylibski, Size estimation and protection of the areas supplying radon to groundwater intakes, Archives of Environmental Protection 26 (1) (2000) 55-71.
Google Scholar
[57]
M. Schubert, J. Kopitz, S. Chałupnik, Sample volume optimization for radon-in-water detection by liquid scintillation counting, Journal of Environmental Radioactivity 134 (2014) 109-113.
DOI: 10.1016/j.jenvrad.2014.03.005
Google Scholar
[58]
N. D. Chau, Measurement of radon concentration in the air by PicoRad detectors, Nukleonika 53 (Supplement 2) (2008) S21-S24.
Google Scholar
[59]
N. D. Chau, E. Chruściel, Ł. Prokólski, Factors controlling measurements of radon mass exhalation rate, Journal of Environmental Radioactivity 82 (2005) 363-369.
DOI: 10.1016/j.jenvrad.2005.02.006
Google Scholar
[60]
E. Kochowska, K. Kozak, B. Kozłowska, J. Mazur, J. Dorda, Test measurements of thoron concentration using two ionization chambers, Alpha GUARD vs. radon monitor RAD7, Nukleonika 54 (3) (2009) 189-192.
Google Scholar
[61]
M. Janik, J. Łoskiewicz, S. Tokonami, K. Kozak, J. Mazur, T. Ishikawa, Determination of the minimum measurement time for estimating long-term mean radon concentration, Radiation Protection Dosimetry 152 (1-3) (2012) 168-173.
DOI: 10.1093/rpd/ncs217
Google Scholar
[62]
J. Mazur, K. Kozak, Complementary system for long term measurements of radon exhalation rate from soil, Review of Scientific Instruments 85 (2014) 022104-1-022104-7.
DOI: 10.1063/1.4865156
Google Scholar
[63]
K. Kozak, J. Mazur, H. Hovhannisyan, A laboratory facility (RTD) to study radon transport through modelled soil bed: results of preliminary measurements, Nukleonika 54 (3) (2009) 193-198.
Google Scholar
[64]
T.A. Przylibski, Estimating the radon emanation coefficient from crystalline rocks into groundwater, Applied Radiation and Isotopes 53 (3) (2000) 473-479.
DOI: 10.1016/s0969-8043(99)00145-1
Google Scholar
[65]
A. T. Solecki, D. E. Tchorz-Trzeciakiewicz, Radon exhalation from the Upper Silesian coal ashes, Geochemical Journal 45 (2011) 491-496.
DOI: 10.2343/geochemj.1.0143
Google Scholar
[66]
S. Chalupnik, M. Wysocka, Measurement of radon exhalation from soil – development of the method and preliminary results, Journal of Mining Science 39 (2) (2003) 191-198.
DOI: 10.1023/b:jomi.0000008467.53630.09
Google Scholar
[67]
M. Wysocka, S. Chalupnik, J. Skowronek, A. Mielnikow, Comparison between short- and long-term measurements of radon concentration in dwellings of Upper Silesia (Poland), Journal of Mining Science 40 (4) (2004) 417-422.
DOI: 10.1007/s10913-004-0026-4
Google Scholar
[68]
A. Miliszkiewicz, Radon, Opolskie Towarzystwo Przyjaciół Nauk, Państwowe Wydawnictwo Naukowe – Oddział Wrocławski, Warszawa-Wrocław (1978). (in Polish).
Google Scholar
[69]
T. A. Przylibski, Radon. Specific component of medicinal waters in the Sudety Mountains, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław. (2005). (in Polish).
Google Scholar
[70]
M. Ciężkowski, Preliminary measurements of concentrations of some gases and radioactivity in Niedźwiedzia Cave in Kletno, Acta Universitatis Wratislaviensis 311 (1978) 91-95. (in Polish).
Google Scholar
[71]
M. Biernacka, J. Henschke, J. Jagielak, Radiological map of Poland, Bezpieczeństwo Jądrowe i Ochrona Radiologiczna 8 (1991) 3-8. (in Polish).
Google Scholar
[72]
J. Jagielak, M. Biernacka, J. Henschke, A. Sosińska, Radiological atlas of Poland 1997, Biblioteka Monitoringu Środowiska, Państwowa Inspekcja Ochrony Środowiska, Centralne Laboratorium Ochrony Radiologicznej, Państwowa Agencja Atomistyki, Warszawa. (1998).
Google Scholar
[73]
L. Fijałkowska-Lichwa, Short-term 222Rn activity concentration changes in underground tourist objects, Ph.D. Dissertation, Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Wrocław. (2012). (unpublished; in Polish).
Google Scholar
[74]
K. Kozak, J. Mazur, J. Vaupotič, D. Grządziel, I. Kobal, K. M. H. Omran, The potential health hazard due to elevated radioactivity in old uranium mines in Dolina Białego, Tatra Mountains, Poland, Isotopes in Environmental and Health Studies 49 (2) (2013).
DOI: 10.1080/10256016.2013.771637
Google Scholar
[75]
J. A. Rubin, Radon exhalation from cement-matrix composites in the function of technological parameters, Ceramic Materials 62 (4) (2010) 591-595. (in Polish with English abstract).
Google Scholar
[76]
W. Ciężkowski, T. A. Przylibski, Radon in waters from health resorts of the Sudety Mts. (SW Poland), Applied Radiation and Isotopes 48 (6) (1997) 855-856.
DOI: 10.1016/s0969-8043(96)00305-3
Google Scholar
[77]
T. A. Przylibski, Shallow circulation groundwater - the main type of water containing hazardous radon concentration, Natural Hazards and Earth System Sciences 11 (2011) 1695-1703.
DOI: 10.5194/nhess-11-1695-2011
Google Scholar
[78]
T. A. Przylibski, A. Adamczyk-Lorenc, Selected problems of radon groundwaters presence in the Polish part of the Sudetes, Acta Universitatis Wratislaviensis 3041 (2007) 115-124.
Google Scholar
[79]
T. A. Przylibski, A. Żebrowski, Origin of radon in medicinal waters of Świeradów Zdrój, Nukleonika 41 (4) (1996) 109-115.
Google Scholar
[80]
A. Adamczyk-Lorenc, Hydrogeochemical background of radon in groundwaters of the Sudetes, Ph.D. Dissertation, Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Wrocław. (2007). (unpublished; in Polish).
Google Scholar
[81]
D. Kluszczyński, M. Tybor-Czerwińska, J. Kacprzyk, Z. Kamiński, Concentrations of natural 226Ra and 222Rn radioisotopes in the water from deep well intakes in the vicinity of Łódź, Medycyna Pracy 57 (5) (2006).
Google Scholar
[82]
M. Karpińska, J. Kapała, Z. Mnich, A. Szpak, Radon in drinking water in the Białystok region of Poland, Nukleonika 55 (2) (2010) 177-180.
Google Scholar
[83]
E. Kochowska, J. Mazur, K. Kozak, M. Janik, Radon in well waters in the Kraków area, Isotopes in Environmental and Health Studies 40 (3) (2004) 207-212.
DOI: 10.1080/10256010410001678044
Google Scholar
[84]
WHO, 2008 – Guidelines for Drinking-water Quality. Third edition incorporating the first and second addenda, Vol. 1, Recommendations. World Health Organization, Geneva.
Google Scholar
[85]
T. A. Przylibski, J. Piasecki, Radon as a natural radioactive tracer of permanent air movements in the Niedźwiedzia Cave (Śnieżnik Kłodzki, Sudety Mts. ), Kras i Speleologia 9 (1998) 179-193.
Google Scholar
[86]
T. A. Przylibski, Radon as a natural radioactive tracer for studying crystalline rock aquifers – a few usage concepts, Acta Universitatis Wratislaviensis 3041 (2007) 125-142.
Google Scholar