Radon Research in Poland: A Review

Article Preview

Abstract:

The article presents the most important results of radon research in Poland. Large-scale research, launched in this country in the early 1950s, was originally linked to using radon dissolved in groundwater in balneotherapy as well as to uranium ore exploration and mining. This early research focused on the area of the Sudetes and nowadays it is also south-western Poland where most radon research is being conducted. This is chiefly due to the geological structure of the Sudetes and the Fore-Sudetic block, which is propitious to radon accumulation in many environments. Radon research in Poland has been developing dynamically since the 1990s. A lot of research teams and centres have been formed, all of them using a variety of methods and advanced measurement equipment enabling research into radon occurrence in all geospheres and all spheres of human activity. The author presents the contribution of Polish science to broadening human knowledge of the geochemistry of radon, particularly of 222Rn isotope. The article also presents the ranges and mean values of 222Rn activity concentration measured in different environments in Poland including the atmospheric air, the air in buildings and underground hard-coal and copper mines, the cave air, the air in underground tourist sites and abandoned uranium mines, as well as soil air and groundwater.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 238)

Pages:

90-115

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Council Directive 2013/51/EURATOM of 22 October 2013 laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. Official Journal of the European Union, 7. 11. 2013., L 296/12 – L 296/21.

Google Scholar

[2] Council Directive 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/ Euratom. Official Journal of the European Union, 17. 1. 2014., L 13/1 – L 13/73.

DOI: 10.1093/oxfordjournals.rpd.a032482

Google Scholar

[3] J. Znosko (ed. ), Tectonic atlas of Poland, Polish Geological Institute, Warsaw (1998).

Google Scholar

[4] M. Narkiewicz, R. Dadlez, Geological regional subdivision of Poland – general guidelines and proposed schemes of sub-Cenozoic and sub-Permian units, Przegląd Geologiczny 56 (5) (2008) 391-397. (in Polish with English abstract).

Google Scholar

[5] P. H. Karnkowski, Tectonic subdivision of Poland – Polish Lowlands, Przegląd Geologiczny 56 (10) (2008) 895-903. (in Polish with English abstract).

Google Scholar

[6] S. Wołkowicz (ed. ), Radon potential of Sudetes with determination of potentially medicinal radon water areas, Polish Geological Institute, Warsaw (2007). (in Polish with English summary).

Google Scholar

[7] T. A. Przylibski, Concentration of 226Ra in rocks of the southern part of Lower Silesia (SW Poland), Journal of Environmental Radioactivity 75 (2) (2004) 171-191.

DOI: 10.1016/j.jenvrad.2003.12.003

Google Scholar

[8] J. B. Miecznik, R. Strzelecki, S. Wołkowicz, Uranium in Poland – history of prospecting and chances for finding new deposits, Przegląd Geologiczny 59 (10), (2011) 688-697. (in Polish with English abstract).

Google Scholar

[9] A. Solecki, W. Śliwiński, I. Wojciechowska, D. Tchorz-Trzeciakiewicz, P. Syryczyński, M. Sadowska, B. Makowski, Assessment of possible occurrence of uranium mineralization in Poland based on results of geological and exploration work, Przegląd Geologiczny 59 (2), (2011).

Google Scholar

[10] T. A. Przylibski, A. Żebrowski, M. Karpińska, J. Kapała, K. Kozak, J. Mazur, D. Grządziel, K. Mamont-Cieśla, O. Stawarz, B. Kozłowska, B. Kłos, J. Dorda, M. Wysocka, J. Olszewski, M. Dohojda, Mean annual 222Rn concentration in homes located in different geological regions of Poland – first approach to whole country area, Journal of Environmental Radioactivity 102 (2011).

DOI: 10.1016/j.jenvrad.2011.03.018

Google Scholar

[11] K. Kozak, J. Mazur, B. Kozłowska, M. Karpińska, T. A. Przylibski, K. Mamont-Cieśla, D. Grządziel, O. Stawarz, M. Wysocka, J. Dorda, A. Żebrowski, J. Olszewski, H. Hovhannisyan, M. Dohojda, J. Kapała, I. Chmielewska, B. Kłos, J. Jankowski, S. Mnich, R. Kołodziej, Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon, Applied Radiation and Isotopes 69 (10) (2011).

DOI: 10.1016/j.apradiso.2011.05.018

Google Scholar

[12] St. Chibowski, A. Komosa, Radon concentration in basements of old town buildings in the Lublin region, Poland, Journal of Radioanalytical and Nuclear Chemistry 247 (1) (2001) 53-56.

DOI: 10.1023/a:1006750628129

Google Scholar

[13] M. Karpińska, Z. Mnich, J. Kapała, Seasonal changes in radon concentrations in buildings in the region of northeastern Poland, Journal of Environmental Radioactivity 77 (2004) 101-109.

DOI: 10.1016/j.jenvrad.2004.02.005

Google Scholar

[14] M. Karpińska, Z. Mnich, J. Kapała, K. Antonowicz, M. Przestalski, Time changeability in radon concentration in one-family dwelling houses in the northeastern region of Poland, Radiation Protection Dosimetry 113 (3) (2005) 300-307.

DOI: 10.1093/rpd/nch459

Google Scholar

[15] M. Műllerová, K. Kozak, T. Kovács, A. Csordás, D. Grzadziel, K. Holý, J. Mazur, A. Moravcsík, M. Neznal, M. Neznal, I. Smetanová, Preliminary results of indoor radon survey in V4 countries, Radiation Protection Dosimetry 160 (1-3) (2014) 210-213.

DOI: 10.1016/j.apradiso.2016.01.010

Google Scholar

[16] J. Olszewski, J. Skubalski, Radon concentrations in selected residential buildings in the city of Łódź, Medycyna Pracy 62 (1) (2011) 31-36. (in Polish with English abstract).

Google Scholar

[17] M. Wysocka, B. Kozłowska, J. Dorda, B. Kłos, I. Chmielewska, J. Rubin, M. Karpińska, M. Dohojda, Annual observations of radon activity concentrations in dwellings of Silesian Voivodeship, Nukleonika 55 (3) (2010) 369-375.

Google Scholar

[18] M. Wysocka, S. Chalupnik, Correlation of radon concentration level with mining and geological conditions in Upper Silesia region, Journal of Mining Science 39 (2) (2003) 199-206.

DOI: 10.1023/b:jomi.0000008468.35224.6d

Google Scholar

[19] M. Wysocka, A. Kotyrba, S. Chalupnik, J. Skowronek, Geophysical methods in radon risk studies, Journal of Environmental Radioactivity 82 (2005) 351-362.

DOI: 10.1016/j.jenvrad.2005.02.009

Google Scholar

[20] M. Wysocka, A. Kotyrba, Radon mapping with the support of geophysical methods, Journal of Mining Science 47 (3) (2011) 330-337.

DOI: 10.1134/s1062739147030105

Google Scholar

[21] T. A. Przylibski, W. Ciężkowski, Seasonal changes of radon concentration in the Niedźwiedzia Cave (SW Poland), Il Nuovo Cimento 22C (3-4) (1999) 463-469.

Google Scholar

[22] T. A. Przylibski, Radon concentration changes in the air of two caves in Poland, Journal of Environmental Radioactivity 45 (1) (1999) 81-94.

DOI: 10.1016/s0265-931x(98)00081-2

Google Scholar

[23] M. Wysocka, Radon in Jurassic caves of the Kraków-Częstochowa Upland, Geochemical Journal 45 (2011) 447-453.

DOI: 10.2343/geochemj.1.0142

Google Scholar

[24] T. A. Przylibski, Radon in the air in the Millenium of the Polish State underground tourist route in Kłodzko (Lower Silesia), Archives of Environmental Protection 24 (2) (1998) 33-41.

Google Scholar

[25] T. A. Przylibski, Changes in the concentration of radon-222 and its daughter products in the air of the underground tourist route in Walim (Lower Silesia), Archives of Environmental Protection 26 (3) (2000) 13-27.

Google Scholar

[26] T. A. Przylibski, Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland), Journal of Environmental Radioactivity 57 (2) (2001) 87-103.

DOI: 10.1016/s0265-931x(01)00012-1

Google Scholar

[27] D. Mazur, M. Janik, J. Łoskiewicz, P. Olko, J. Swakoń, Measurements of radon concentration in soil gas by CR-39 detectors, Radiation Measurements 31 (1999) 295-300.

DOI: 10.1016/s1350-4487(99)00135-3

Google Scholar

[28] J. Swakoń, K. Kozak, M. Paszkowski, R. Gradziński, J. Łoskiewicz, J. Mazur, M. Janik, J. Bogacz, T. Horwacik, P. Olko, Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area, Journal of Environmental Radioactivity 78 (2005).

DOI: 10.1016/j.jenvrad.2004.04.004

Google Scholar

[29] D. E. Tchorz-Trzeciakiewicz, A. T. Solecki, Atmospheric radon concentration around a phosphogypsum stack at Wislinka (northern Poland), Journal of Elementology 2 (2012) 317-328.

DOI: 10.5601/jelem.2012.17.2.13

Google Scholar

[30] A. T. Solecki, R. Puchała, D. Tchorz, Radon and its decay product activities in the magmatic area of the Karkonosze Granite and the adjacent volcano-sedimentary Intrasudetic Basin, Annals of Geophysics 50 (4) (2007) 579-585.

DOI: 10.4401/ag-3071

Google Scholar

[31] D. E. Tchorz-Trzeciakiewicz, A. T. Solecki, Seasonal variation of radon concentrations in atmospheric air in the Nowa Ruda area (Sudety Mountains) of southwest Poland, Geochemical Journal 45 (2011) 455-461.

DOI: 10.2343/geochemj.1.0149

Google Scholar

[32] J. Olszewski, M. Chodak, J. Jankowski, An assay of the current exposure to radon of spa workers in Poland, Medycyna Pracy 59 (1) (2008) 35-38. (in Polish with English abstract).

Google Scholar

[33] A. Podstawczyńska, K. Kozak, W. Pawlak, J. Mazur, Seasonal and diurnal variation of outdoor radon (222Rn) concentrations in urban and rural area with reference to meteorological conditions, Nukleonika 55 (4) (2010) 543-547.

Google Scholar

[34] M. Zimnoch, P. Wach, L. Chmura, Z. Gorczyca, K. Rozanski, J. Godlowska, J. Mazur, K. Kozak, A. Jeričević, Factors controlling temporal variability of near-ground atmospheric 222Rn concentration over central Europe, Atmospheric Chemistry and Physics 14, (2014).

DOI: 10.5194/acp-14-9567-2014

Google Scholar

[35] L. Fijałkowska-Lichwa, T. A. Przylibski, Short-term 222Rn activity concentration changes in underground spaces with limited air exchange with the atmosphere, Natural Hazards and Earth System Sciences 11, (2011). 1179-1188.

DOI: 10.5194/nhess-11-1179-2011

Google Scholar

[36] L. Fijałkowska-Lichwa, Short-term radon activity concentration changes along the Underground Educational Tourist Route in the Old Uranium Mine in Kletno (Sudety Mts., SW Poland), Journal of Environmental Radioactivity 135, (2014) 25-35.

DOI: 10.1016/j.jenvrad.2014.03.014

Google Scholar

[37] M. Wysocka, Radon in the investigations of geo-hazards in Polish collieries, Geofluids 10 (2010) 564-570.

DOI: 10.1111/j.1468-8123.2010.00306.x

Google Scholar

[38] J. Kisiel, M. Budzanowski, J. Dorda, K. Kozak, J. Mazur, J. W. Mietelski, M. Puchalska, E. Tomankiewicz, A. Zalewska, Measurements of natural radioactivity in the salt cavern of the Polkowice-Sieroszowice copper mine, Acta Physica Polonica B 41 (7) (2010).

Google Scholar

[39] T. A. Przylibski, J. Bartak, E. Kochowska, L. Fijałkowska-Lichwa, K. Kozak, J. Mazur, New SRDN-3 probes with a semi-conductor detector for measuring radon activity concentration in underground spaces, Journal of Radioanalytical and Nuclear Chemistry 285 (3) (2010).

DOI: 10.1007/s10967-010-0574-9

Google Scholar

[40] T. A. Przylibski, K. Mamont-Cieśla, M. Kusyk, J. Dorda, B. Kozłowska, Radon concentrations in groundwaters of the Polish part of the Sudety Mountains (SW Poland), Journal of Environmental Radioactivity 75 (2) (2004) 193-209.

DOI: 10.1016/j.jenvrad.2003.12.004

Google Scholar

[41] A. Walencik, B. Kozłowska, T. A. Przylibski, J. Dorda, W. Zipper, Natural radioactivity of groundwater from the Przerzeczyn-Zdrój Spa, Nukleonika 55 (2) (2010) 169-175.

Google Scholar

[42] T. A. Przylibski, J. Gorecka, A. Kula, L. Fijałkowska-Lichwa, K. Zagożdżon, P. Zagożdżon, W. Miśta, R. Nowakowski, 222Rn and 226Ra activity concentrations in groundwaters of southern Poland: new data and selected genetic relations, Journal of Radioanalytical and Nuclear Chemistry 301 (3) (2014).

DOI: 10.1007/s10967-014-3215-x

Google Scholar

[43] H. Bem, U. Plota, M. Staniszewska, E. M. Bem, D. Mazurek, Radon (222Rn) in underground drinking water supplies of the Southern Greater Poland Region, Journal of Radioanalytical and Nuclear Chemistry 299 (2014) 1307-1312.

DOI: 10.1007/s10967-013-2912-1

Google Scholar

[44] B. Kozłowska, A. Walencik, T. A. Przylibski, J. Dorda, W. Zipper, Uranium, radium and radon isotopes in selected brines of Poland, Nukleonika 55 (4) (2010) 519-522.

DOI: 10.1016/j.radmeas.2007.03.004

Google Scholar

[45] T. A. Przylibski, B. Kozłowska, J. Dorda, B. Kiełczawa, Radon-222 and 226Ra concentrations in mineralized groundwaters of Gorzanów (Kłodzko Basin, Sudeten Mountains, SW Poland), Journal of Radioanalytical and Nuclear Chemistry 253 (1) (2002).

DOI: 10.1023/a:1015891812671

Google Scholar

[46] A. Komosa, E. Madej, M. Piekarz, Determination of a supported radon activity concentration in bottled mineral waters, Chemia Analityczna (Warsaw) 53 (2008) 835-843.

Google Scholar

[47] B. Kozłowska, A. Walencik, J. Dorda, Natural radioactivity and dose estimation in underground water from the Sudety Mountains in Poland, Radiation Protection Dosimetry 128 (3) (2008) 331-335.

DOI: 10.1093/rpd/ncm380

Google Scholar

[48] B. Kozłowska, A. Walencik, J. Dorda, W. Zipper, Radon in groundwater and dose estimation for inhabitants in Spas of the Sudety Mountain area, Poland, Applied Radiation and Isotopes 68 (2010) 854-857.

DOI: 10.1016/j.apradiso.2009.12.016

Google Scholar

[49] T.A. Przylibski, J. Gorecka, 222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland), Journal of Environmental Radioactivity 134 (2014) 43-53.

DOI: 10.1016/j.jenvrad.2014.02.021

Google Scholar

[50] T.A. Przylibski, A. Żebrowski, Origin of radon in medicinal waters of Lądek Zdrój (Sudety Mountains, SW Poland), Journal of Environmental Radioactivity 46 (1) (1999) 121-129.

DOI: 10.1016/s0265-931x(98)00116-7

Google Scholar

[51] T.A. Przylibski, 222Rn concentration changes in medicinal groundwaters of Lądek Zdrój (Sudety Mountains, SW Poland), Journal of Environmental Radioactivity 48 (3) (2000) 327-347.

DOI: 10.1016/s0265-931x(99)00080-6

Google Scholar

[52] T.A. Przylibski, K. Mroczkowski, A. Żebrowski, P. Filbier, Radon-222 in medicinal groundwaters of Szczawno Zdrój (Sudety Mountains, SW Poland), Environmental Geology 40 (4/5) (2001) 429-439.

DOI: 10.1007/s002540000231

Google Scholar

[53] K. Mamont-Cieśla, O. Stawarz, M. Karpińska, J. Kapała, K. Kozak, D. Grządziel, S. Chałupnik, I. Chmielewska, J. Olszewski, T. A. Przylibski, A. Żebrowski, Intercomparison of radon CR-39 detector systems conducted in CLOR's calibration chamber, Nukleonika 55 (4) (2010).

DOI: 10.1016/j.apradiso.2011.05.018

Google Scholar

[54] K. Kozak, B. Kozłowska, T. A. Przylibski, J. Mazur, A. Adamczyk-Lorenc, K. Mamont-Cieśla, O. Stawarz, J. Dorda, B. Kłos, M. Janik, E. Kochowska, Intercomparison measurements of 222Rn concentration in water samples in Poland, Radiation Measurements 47 (1) (2012).

DOI: 10.1016/j.radmeas.2011.10.018

Google Scholar

[55] S. Chalupnik, J. Skowronek, J. Lebecka, K. Skubacz, M. Wysocka, B. Michalik, System of radiation hazard monitoring and control in the coal mines of Poland, Journal of Mining Science 38 (6) (2002) 587-595.

DOI: 10.1023/a:1024990310347

Google Scholar

[56] T.A. Przylibski, Size estimation and protection of the areas supplying radon to groundwater intakes, Archives of Environmental Protection 26 (1) (2000) 55-71.

Google Scholar

[57] M. Schubert, J. Kopitz, S. Chałupnik, Sample volume optimization for radon-in-water detection by liquid scintillation counting, Journal of Environmental Radioactivity 134 (2014) 109-113.

DOI: 10.1016/j.jenvrad.2014.03.005

Google Scholar

[58] N. D. Chau, Measurement of radon concentration in the air by PicoRad detectors, Nukleonika 53 (Supplement 2) (2008) S21-S24.

Google Scholar

[59] N. D. Chau, E. Chruściel, Ł. Prokólski, Factors controlling measurements of radon mass exhalation rate, Journal of Environmental Radioactivity 82 (2005) 363-369.

DOI: 10.1016/j.jenvrad.2005.02.006

Google Scholar

[60] E. Kochowska, K. Kozak, B. Kozłowska, J. Mazur, J. Dorda, Test measurements of thoron concentration using two ionization chambers, Alpha GUARD vs. radon monitor RAD7, Nukleonika 54 (3) (2009) 189-192.

Google Scholar

[61] M. Janik, J. Łoskiewicz, S. Tokonami, K. Kozak, J. Mazur, T. Ishikawa, Determination of the minimum measurement time for estimating long-term mean radon concentration, Radiation Protection Dosimetry 152 (1-3) (2012) 168-173.

DOI: 10.1093/rpd/ncs217

Google Scholar

[62] J. Mazur, K. Kozak, Complementary system for long term measurements of radon exhalation rate from soil, Review of Scientific Instruments 85 (2014) 022104-1-022104-7.

DOI: 10.1063/1.4865156

Google Scholar

[63] K. Kozak, J. Mazur, H. Hovhannisyan, A laboratory facility (RTD) to study radon transport through modelled soil bed: results of preliminary measurements, Nukleonika 54 (3) (2009) 193-198.

Google Scholar

[64] T.A. Przylibski, Estimating the radon emanation coefficient from crystalline rocks into groundwater, Applied Radiation and Isotopes 53 (3) (2000) 473-479.

DOI: 10.1016/s0969-8043(99)00145-1

Google Scholar

[65] A. T. Solecki, D. E. Tchorz-Trzeciakiewicz, Radon exhalation from the Upper Silesian coal ashes, Geochemical Journal 45 (2011) 491-496.

DOI: 10.2343/geochemj.1.0143

Google Scholar

[66] S. Chalupnik, M. Wysocka, Measurement of radon exhalation from soil – development of the method and preliminary results, Journal of Mining Science 39 (2) (2003) 191-198.

DOI: 10.1023/b:jomi.0000008467.53630.09

Google Scholar

[67] M. Wysocka, S. Chalupnik, J. Skowronek, A. Mielnikow, Comparison between short- and long-term measurements of radon concentration in dwellings of Upper Silesia (Poland), Journal of Mining Science 40 (4) (2004) 417-422.

DOI: 10.1007/s10913-004-0026-4

Google Scholar

[68] A. Miliszkiewicz, Radon, Opolskie Towarzystwo Przyjaciół Nauk, Państwowe Wydawnictwo Naukowe – Oddział Wrocławski, Warszawa-Wrocław (1978). (in Polish).

Google Scholar

[69] T. A. Przylibski, Radon. Specific component of medicinal waters in the Sudety Mountains, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław. (2005). (in Polish).

Google Scholar

[70] M. Ciężkowski, Preliminary measurements of concentrations of some gases and radioactivity in Niedźwiedzia Cave in Kletno, Acta Universitatis Wratislaviensis 311 (1978) 91-95. (in Polish).

Google Scholar

[71] M. Biernacka, J. Henschke, J. Jagielak, Radiological map of Poland, Bezpieczeństwo Jądrowe i Ochrona Radiologiczna 8 (1991) 3-8. (in Polish).

Google Scholar

[72] J. Jagielak, M. Biernacka, J. Henschke, A. Sosińska, Radiological atlas of Poland 1997, Biblioteka Monitoringu Środowiska, Państwowa Inspekcja Ochrony Środowiska, Centralne Laboratorium Ochrony Radiologicznej, Państwowa Agencja Atomistyki, Warszawa. (1998).

Google Scholar

[73] L. Fijałkowska-Lichwa, Short-term 222Rn activity concentration changes in underground tourist objects, Ph.D. Dissertation, Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Wrocław. (2012). (unpublished; in Polish).

Google Scholar

[74] K. Kozak, J. Mazur, J. Vaupotič, D. Grządziel, I. Kobal, K. M. H. Omran, The potential health hazard due to elevated radioactivity in old uranium mines in Dolina Białego, Tatra Mountains, Poland, Isotopes in Environmental and Health Studies 49 (2) (2013).

DOI: 10.1080/10256016.2013.771637

Google Scholar

[75] J. A. Rubin, Radon exhalation from cement-matrix composites in the function of technological parameters, Ceramic Materials 62 (4) (2010) 591-595. (in Polish with English abstract).

Google Scholar

[76] W. Ciężkowski, T. A. Przylibski, Radon in waters from health resorts of the Sudety Mts. (SW Poland), Applied Radiation and Isotopes 48 (6) (1997) 855-856.

DOI: 10.1016/s0969-8043(96)00305-3

Google Scholar

[77] T. A. Przylibski, Shallow circulation groundwater - the main type of water containing hazardous radon concentration, Natural Hazards and Earth System Sciences 11 (2011) 1695-1703.

DOI: 10.5194/nhess-11-1695-2011

Google Scholar

[78] T. A. Przylibski, A. Adamczyk-Lorenc, Selected problems of radon groundwaters presence in the Polish part of the Sudetes, Acta Universitatis Wratislaviensis 3041 (2007) 115-124.

Google Scholar

[79] T. A. Przylibski, A. Żebrowski, Origin of radon in medicinal waters of Świeradów Zdrój, Nukleonika 41 (4) (1996) 109-115.

Google Scholar

[80] A. Adamczyk-Lorenc, Hydrogeochemical background of radon in groundwaters of the Sudetes, Ph.D. Dissertation, Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Wrocław. (2007). (unpublished; in Polish).

Google Scholar

[81] D. Kluszczyński, M. Tybor-Czerwińska, J. Kacprzyk, Z. Kamiński, Concentrations of natural 226Ra and 222Rn radioisotopes in the water from deep well intakes in the vicinity of Łódź, Medycyna Pracy 57 (5) (2006).

Google Scholar

[82] M. Karpińska, J. Kapała, Z. Mnich, A. Szpak, Radon in drinking water in the Białystok region of Poland, Nukleonika 55 (2) (2010) 177-180.

Google Scholar

[83] E. Kochowska, J. Mazur, K. Kozak, M. Janik, Radon in well waters in the Kraków area, Isotopes in Environmental and Health Studies 40 (3) (2004) 207-212.

DOI: 10.1080/10256010410001678044

Google Scholar

[84] WHO, 2008 – Guidelines for Drinking-water Quality. Third edition incorporating the first and second addenda, Vol. 1, Recommendations. World Health Organization, Geneva.

Google Scholar

[85] T. A. Przylibski, J. Piasecki, Radon as a natural radioactive tracer of permanent air movements in the Niedźwiedzia Cave (Śnieżnik Kłodzki, Sudety Mts. ), Kras i Speleologia 9 (1998) 179-193.

Google Scholar

[86] T. A. Przylibski, Radon as a natural radioactive tracer for studying crystalline rock aquifers – a few usage concepts, Acta Universitatis Wratislaviensis 3041 (2007) 125-142.

Google Scholar