A Preliminary Study of the Radon and Thoron Concentration Distribution inside a Cellar Using Nuclear Track Detectors (NTDs)

Article Preview

Abstract:

In this paper we present the preliminary results of a study of the radon and thoron (222Rn and 220Rn) and their progeny, concentration distribution inside the cellar as recorded by a 200×200 cm mesh of CR-39 bare detectors. The mesh comprised one hundred and sixty two 1.9×0.9 cm CR-39 (Lantrack®) polycarbonate chips. The distribution of radon and thoron shows a complex pattern. Both sides of the mesh displayed a significant concentration gradient of radon and thoron levels, with a maximum near to the top and bottom of the detection grid, and minimum around the center. This spatially inhomogeneous distribution recorded by the detectors could be the result of the distance from the walls, gas kinematics, diffusion coefficient, room geometrical configuration, aerosol behaviors, and objects inside the room, among others. It suggests that the analysis of these complex distribution patterns may be applicable for the estimation and evaluation of indoor radon concentration levels, considering each particular location and characteristics of the place.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 238)

Pages:

127-133

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Health Protection Agency, Radon and public health: Report of the independent advisory group on ionising radiation, United Kingdom, (2009).

Google Scholar

[2] F. Wang and I.C. Ward, Radon entry, migration and reduction in houses with cellars, Building and Environment 37 (2002) 1153-1165.

DOI: 10.1016/s0360-1323(01)00097-x

Google Scholar

[3] A.R. Denman, N.P. Groves-Kirkby, C.J. Groves-Kirkby, R.G.M. Crockett, P.S. Phillips, and A.C. Woolridge, Health implications of radon distribution in living rooms and bedrooms in U.K. dwellings - A case study in Northamptonshire, Environt Int. 33 (2007).

DOI: 10.1016/j.envint.2007.01.011

Google Scholar

[4] G. Espinosa and R.B. Gammage. A representative survey of indoor radon in the sixteen regions in Mexico City, Radiat. Prot. Dosim. 103 (2003) 73-76.

DOI: 10.1093/oxfordjournals.rpd.a006119

Google Scholar

[5] G. Espinosa, J.I. Golzarri, J. Rickards and R.B. Gammage, Distribution of indoor radon levels in Mexico, Radiat. Meas. 31 (1999) 355-358.

DOI: 10.1016/s1350-4487(99)00171-7

Google Scholar

[6] D. Mazur, M. Janik, J. Loskiewicz, P. Olko and J. Swakon, Measurements of radon concentration in soil gas by CR-39 detectors, Radiat. Meas. 31 (1999) 295-300.

DOI: 10.1016/s1350-4487(99)00135-3

Google Scholar

[7] N.R. Varley and A.G. Flowers, The Influence of Geology on radon Levels in S.W. England, Radiat. Prot. Dosim. 77 (1998) 171-176.

Google Scholar

[8] T. Győrfi and I. Csige, Effect of atmospheric pressure variations on the 222Rn activity concentration in the air of a wine cellar, J. Radioanal. Nucl. Chem. 288 (2011) 229-232.

DOI: 10.1007/s10967-010-0947-0

Google Scholar

[9] V. Urosevic, D. Nikezic, S. Vulovic, A theoretical approach to indoor radon and thoron Distribution, J. Environ. Radioact. 99 (2008) 1829-1833.

DOI: 10.1016/j.jenvrad.2008.07.010

Google Scholar

[10] W. Zhuo, T. Iida, J. Moriizumi, T. Aoyagi and I. Takahashi, Simulation of the concentrations and distributions of indoor radon and thoron, Radiat. Prot. Dosim. 93 (2001) 357-368.

DOI: 10.1093/oxfordjournals.rpd.a006448

Google Scholar

[11] G. Espinosa, Trazas Nucleares en Sólidos. Instituto de Física, Universidad Nacional Autónoma de México, ISBN-968-36-4219-5 (1994).

DOI: 10.15415/jnp.2017.51021

Google Scholar

[12] G. Espinosa, J.I. Golzarri, J. Bogard, I. Gaso, L. Ponciano, M. Mena and N. Segovia, Indoor radon measurements in Mexico City, Radiat Meas. 43 (2013) 431-434.

DOI: 10.1016/j.radmeas.2008.03.039

Google Scholar

[13] R.B. Gammage and G. Espinosa, Digital Imaging System for Track Measurements, Radiat. Meas. 28 (1997) 835-838.

DOI: 10.1016/s1350-4487(97)00193-5

Google Scholar

[14] D. Furrer, R. Crameri and W. Burkart, Dynamics of Rn transport from the cellar to the living area in an unheated house, Health Physics. 60 (1991) 939-398.

DOI: 10.1097/00004032-199103000-00009

Google Scholar

[15] T. Győrfi and P. Raics, Investigation of environmental radioactivity of wine cellars, water course and industrial waste, Applied Radiat. Isot. 69 (2011) 1235-1240.

DOI: 10.1016/j.apradiso.2011.02.024

Google Scholar

[16] P. Szerbin, I. Vaupotic, I. Csige, I. Kobal, I. Hunyadi, L. Juhász, and E. Baradács, Radioactivity in vine cellars in Hungary and Slovenia, International Congress Series 1276 (2005) 362-364.

DOI: 10.1016/j.ics.2004.12.063

Google Scholar

[17] F. Wang and I.C. Ward, Multiple radon entry modeling in a house with a cellar, J. Air & Waste Management Assoc. 49 (1999) 682-693.

DOI: 10.1080/10473289.1999.10463840

Google Scholar