Advances in Measurement of Indoor 222Rn and 220Rn Gas Concentrations Using Solid State Nuclear Track Detectors

Article Preview

Abstract:

Solid State Nuclear Track Detectors (SSNTDs) have been widely used for time integrated radon measurements due to their cost effectiveness, portability and easy-to-use feature. In order to obtain a proper measurement of radon using SSNTDs, it is necessary to select a proper exposure mode. The various modes in which the SSNTDs can be exposed are: (i) bare mode, (ii) single cup mode, and (iii) twin cup mode. This paper addresses the merits and demerits of SSNTDs used in each type of mode of exposure for radon monitoring. The paper analyses the results of the conventional bare mode as well as the latest twin cup mode of SSNTDs. The paper also analyses the performance comparison of single entrance vis a vis double entrance type twin cup dosimeter. Design and features of the newly developed pinhole based single entrance twin cup dosimeter have been discussed. A protocol has been proposed for the selection of houses and deployment of the dosimeter. Some of the important findings from laboratory and field experiments of the new device have been presented.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 238)

Pages:

116-126

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] United Nations Scientific Committee on the Effects of Atomic Radiation, Sources and Effects of Ionizing Radiation. UNSCEAR, United Nations, New York, (2000).

DOI: 10.18356/49c437f9-en

Google Scholar

[2] World Health Organization (WHO), Handbook on Indoor Radon: A Public Health Perspective, WHO Press, Geneva, (2009).

Google Scholar

[3] J. Miles, Development of maps of radon-prone areas using radon measurements in houses, Journal of Hazardous Materials 61 (1998) 53–58.

DOI: 10.1016/s0304-3894(98)00107-1

Google Scholar

[4] K.N. Yu, T. Cheung, Z.J. Guan, E.C.M. Young, B.W.N. Mui, Y.Y. Wong, Concentrations of 222Rn, 220Rn and their progeny in residences in Hong Kong, J. Environ. Radioact. 45 (1999) 291–308.

DOI: 10.1016/s0265-931x(98)00114-3

Google Scholar

[5] Z. Zhang, B. Smith, D.J. Steck, Q. Guo, W. Field, Variation in yearly residential radon concentrations in the Upper Midwest, Health Phys. 93 (2007) 288-297.

DOI: 10.1097/01.hp.0000266740.09253.10

Google Scholar

[6] T.V. Ramachandran, B.K. Sahoo, Thoron (220Rn) in the indoor environment and work places, Indian J. Phys. 83 (2009) 1-20.

DOI: 10.1007/s12648-009-0086-z

Google Scholar

[7] W.W. Nazaroff, A.V. Nero, Radon and its decay products in indoor air, John Wiley & Sons, New York, (1998).

Google Scholar

[8] K. Kozak, J. Mazur, B. Kozlowska, M. Karpinska, T. A. Przylibski, K. Mamont-Ciesla, D. Grzadziel, O. Stawarz, M. Wysocka, J. Dorda, A. Zebrowski, J. Olszewski, H. Hovhannisyan, M. Dohojda, J. Kapala, I. Chmielewska, B. Klos, J. Jankowski, S. Mnich, R. Kolodziej, Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon, Applied Radiation and Isotopes 69 (2011) 1459-1465.

DOI: 10.1016/j.apradiso.2011.05.018

Google Scholar

[9] G.K. Gillmore, P.S. Phillips, A.R. Denman, The effects of geology and the impact of seasonal correction factors on indoor radon levels: a case study approach, J. Environ. Radioact. 84 (2005) 469–479.

DOI: 10.1016/j.jenvrad.2005.05.004

Google Scholar

[10] E. Stranden, L. Berteig, F. Ugletveit, A study on radon in dwellings, Health Phys. 36 (1979) 413–421.

DOI: 10.1097/00004032-197903000-00018

Google Scholar

[11] T.V. Ramachandran, B.Y. Lalit, U.C. Mishra, Measurement of radon and thoron present in the environment using nuclear track etch technique, Nucl. Tracks Radiat. Meas. 11 (1986) 245–249.

DOI: 10.1016/1359-0189(86)90041-5

Google Scholar

[12] S. Singh, A. Kumar, B. Singh, Radon level in dwellings and its correlation with uranium and radium content in some areas of Himachal Pradesh, India, Environ. Int. 28 (2002) 97-101.

DOI: 10.1016/s0160-4120(02)00012-0

Google Scholar

[13] R.C. Ramola, R.B.S. Rawat, M.S. Kandari, T.V. Ramachandran, K.P. Eappen, M.C. Subha Ramu, Calibration of LR-115 Plastic Track Detectors for Environmental Radon Measurements, Indoor and Built Environment 5 (1996) 364-366.

DOI: 10.1159/000463753

Google Scholar

[14] H.S. Virk, N. Sharma, B.S. Bajwa, Environmental radioactivity: a case study in Himachal Pradesh, India, J. Environ. Radioact. 45(1999) 119-127.

DOI: 10.1016/s0265-931x(98)00084-8

Google Scholar

[15] H.S. Virk, N. Sharma, Indoor radon levels and inhalation doses to population in Punjab, Curr. Sci. 78 (2000) 1418-1420.

Google Scholar

[16] B.S. Bajwa, H.S. Virk, S. Singh, A comparative study of indoor radon level measurements in the dwellings of Punjab and Himachal Pradesh, India. Radiat. Meas. 36 (2003) 457-460.

DOI: 10.1016/s1350-4487(03)00171-9

Google Scholar

[17] D. Nikezic, C. Baixeras, Analysis of sensitivity of LR115 in cylindrical diffusion chambers for radon concentration determination, Nucl. Instrum. Methods Phys. Res. A 364 (1995) 531–536.

Google Scholar

[18] D. Nikezic, C. Baixeras, D. Kostic, Sensitivity determination and optimisation of a cylindrical diffusion chamber, for radon measurements, with a CR-39 detector, Nucl. Instrum. Methods Phys. Res. A 373 (1996) 290–298.

DOI: 10.1016/0168-9002(95)01507-8

Google Scholar

[19] D. Nikezic, N. Stevanovic, Behavior of 220Rn progeny in diffusion chamber, Nucl. Instrum. Methods Phys. Res. A 570 (2007) 182–186.

DOI: 10.1016/j.nima.2006.10.001

Google Scholar

[20] Y.S. Mayya, K.P. Eappen, K.S.V. Nambi, Methodology for mixed field inhalation dosimetry in monazite areas using a twin-cup dosemeter with three track detectors, Radiat. Prot. Dosim. 77 (1998) 170-184.

DOI: 10.1093/oxfordjournals.rpd.a032308

Google Scholar

[21] K.P. Eappen, Y.S. Mayya, Calibration factors for LR-115 (Type-II) based radon thoron discriminating dosimeter, Radiation Measurements 38 (2004) 5-17.

DOI: 10.1016/j.radmeas.2003.09.003

Google Scholar

[22] B.K. Sahoo, B.K. Sapra, S.D. Kanse, J.J. Gaware, Y.S. Mayya, A new pin-hole discriminated 222Rn/220Rn passive measurement device with single entry face, Radiation Measurements 58 (2003) 52-60.

DOI: 10.1016/j.radmeas.2013.08.003

Google Scholar

[23] P.K. Hopke, N. Montassier, P. Wasiolek, Evaluation of the effectiveness of several air-cleaners for reducing the hazard from indoor radon progeny, Aerosol Science & Technology 19 (1993) 268-278.

DOI: 10.1080/02786829308959635

Google Scholar