SSNTD Techniques in Radon Surveys for Hydrocarbon Exploration and Occurrence of Natural Gas Seeps

Article Preview

Abstract:

Leakages of hydrocarbon reservoirs often increase the radon concentration on the soil surface through distinct pathways; gas migration results in either prolific macro-seeps or micro-seeps. Soil gases, including radon, are recognized as potential tracers in geoscience. The surficial radiometric anomalies over hydrocarbon reservoirs provide the oil community with a complementary survey tool for oil exploration through the use of nuclear track methodology. The Solid State Nuclear Track Detector (SSNTD) is one of the recognized techniques to be employed advantageously in radon surveys for hydrocarbon exploration and occurrence of natural gas seeps. The nuclear track method provides information on the nature of radioactive gas sources, emanations from the soil and their transport pathways. Latent track etching conditions and their analysis are included.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 238)

Pages:

55-89

Citation:

Online since:

August 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] IAEA, GEOSCIENCES (B3100), Proceedings Symposium on exploration of uranium ore deposits, Vienna, Austria; 29 Mar - 2 Apr, IAEA-SM-208/52, (1976).

Google Scholar

[2] N.P. Singh, M. Singh, S. Singh, H.S. Virk, Uranium and radon estimation in water and plants using SSNTD, Nucl. Tracks Rad. Meas. 8 (1984) 483-486.

DOI: 10.1016/0735-245x(84)90147-9

Google Scholar

[3] A. Lopez, L. Gutiérrez, A. Razo, M. Balcázar, Radon mapping for location geothermal energy source, Nucl. Instrum. Meth. Phys. Res. A 255(1-2) (1987) 426-429.

Google Scholar

[4] M. Balcázar, A. López Martínez, M. Huerta, J.H. Flores Ruíz, P. Peña, Use of Environmental Radioactive Isotopes in Geothermal Prospecting, Proceedings 17th Pacific Basin Nuclear Conference, Cancún, Q.R., México, October 24-30, 2010, pp.1-8.

Google Scholar

[5] A. Rodriguez, Y. Torres, L. Chavarria, F. Molina, Soil Gas Radon Measurement as A Tool to Identify Permeabel Zones at Las Pailas Geothermal Area, Costa Rica. Geothermal Training Programe 30th Anniversary workshop Orkustofnun, Grensasvegur 9, Iceland, August 26-27, (2008).

Google Scholar

[6] N.K. Phuong, A. Harijoko, R. Itoi, Y. Unoki, Water geochemistry and soil gas survey at Ungaran geothermal field, Central Java, Indonesia, J. Volcanology Geothermal Res. 229-230 (2012) 23-33.

DOI: 10.1016/j.jvolgeores.2012.04.004

Google Scholar

[7] C. Karingithi, J. Wambugu, The Geochemistry of Arus and Bogoria Geothermal Prospect, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010, pp.1-6.

Google Scholar

[8] K. Ioannides, C. Papachristodoulou, K. Stamoulis, D. Karamanis, S. Pavlides, A. Hatzipetros, E. Karakala, Soil Gas Radon: A Tool for Exploring Active Fault Zones, Appl. Rad. Isot. 59(2-3) (2003) 205-213.

DOI: 10.1016/s0969-8043(03)00164-7

Google Scholar

[9] G. Jönsson, Radon gas - where from and what to do? Radiat. Meas. 25(1-4) (1995) 537-546.

Google Scholar

[10] J. Swakon, K. Kozak, M. Paszkowski, R. Gradzin'ski, J. Loskiewicz, J. Mazur, M. Janik, J. Bogacz, T. Horwacik. P. Olko, Radon concentration in Soil Gas around local disjunctive Tectonic zones in the Krakow Area, J. Envir. Radioact. 78(2) (2004).

DOI: 10.1016/j.jenvrad.2004.04.004

Google Scholar

[11] N. Segovia, M.A. Armienta, C. Valdes, M. Mena, J.L. Seidel, M. Monnin, P. Pena, M.B.E. Lopez, A.V. Reyes, Volcanic monitoring for radon and chemical species in the soil and in spring water samples, Radiat. Meas. 36 (2003) 379-383.

DOI: 10.1016/s1350-4487(03)00155-0

Google Scholar

[12] H.S. Virk, Correlation of radon anomalies with micro-earthquakes in Kangra and Chamba valleys of N-W Himalaya. Kangra Earthquake Centenary Seminar (KECS-2005), Special Publ. No. 85, GSI (NR), Lucknow (2005), pp.151-160.

DOI: 10.22201/igeof.00167169p.2000.39.3.327

Google Scholar

[13] C. Cigolini, G. Gervino, R. Bonetti, F. Conte, M. Laiolo, D. Coppola, A. Manzoni, Tracking precursors and degassing by radon monitoring during major eruptions at Stromboli Volcano (Aeolian Islands, Italy), Geophys. Res. Lett. 32 (2005).

DOI: 10.1029/2005gl022606

Google Scholar

[14] V. Walia, S. Mahajan, A. Kumar, S. Singh, B.S. Bajwa, T.F. Yang, Fault delineation study using soil-gas method in Dharamsala area, NW Himalayas, India, Radiat. Meas. 43 (2008) S337-S342.

DOI: 10.1016/j.radmeas.2008.04.071

Google Scholar

[15] T.F. Yang, V. Walia, L.L. Chyi, C.C. Fu, C.H. Chen, T.K. Liu, S. R. Song, C.Y. Lee, M. Lee, Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan, Radiat. Meas. 40 (2005) 496-502.

DOI: 10.1016/j.radmeas.2005.05.017

Google Scholar

[16] G. Imme, S. La Delfa, S. Lo Nigro, D. Morelli, G. Patane, Soil radon concentration and volcanic activity of Mt. Etna before and after the 2002 eruption. Radiat. Meas. 41 (2006) 241-245.

DOI: 10.1016/j.radmeas.2005.06.008

Google Scholar

[17] P. Gasparini, S.M. Mantovani, Radon anomalies and volcanic eruptions. J. Volcan. Geothermal Res. 3 (1978) 325-341.

DOI: 10.1016/0377-0273(78)90042-2

Google Scholar

[18] S. Munadi, R.A. Saputro, A. Sutarman, Exploration of natural gas using nuclear radiation. Min. Ener. J. 9 (2010) 1-4.

Google Scholar

[19] L. Zuhui, W. Yujin, C. Donrong, L. Youming, X. Aijun, J. Fuxing, Prospecting Oil and Gas Using CR-39 Detector, Nucl. Tracks Radiat. Meas. 22 (1993) 387-392.

DOI: 10.1016/0969-8078(93)90091-h

Google Scholar

[20] J.E. Tilsley, H. Veldhuyzen, R. R Nicholls, Soil radon gas study of southern Ontario; Ontario Geological Survey, Open File Report 5847 (1993) 148-149.

Google Scholar

[21] G.A. Duddridge, Observations on soil-gas variations in the Bovey Basin, Proceedings of the Ussher Society 8 (1994) 331-335.

Google Scholar

[22] R. Patrick, P. Frédéric, P.K. Bharat, G. Frédéric, B. Mukunda, N.S. Soma, Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal, J. of Envir. Radioact. 102 (2011) 88-102.

DOI: 10.1016/j.jenvrad.2010.10.005

Google Scholar

[23] G. Etiope, S. Lombardi, Evidence for radon transport by carrier gas through faulted clays in Italy. J. Radioanal. Nucl. Chem. 193 (1995) 291-300.

DOI: 10.1007/bf02039886

Google Scholar

[24] L. Morawska, C.R. Phillip, Dependence of the radon emanation coefficient on radium distribution and internal structure of the material, Geochim. Cosmochim. Acta 57 (1993) 1783-1797.

DOI: 10.1016/0016-7037(93)90113-b

Google Scholar

[25] T.K. Ball, D.G. Cameron, T.B. Colman, P.D. Roberts, Behaviour of radon in the geological environment: a review, Engineer. Geo. 24 (1991) 169-182.

DOI: 10.1144/gsl.qjeg.1991.024.02.01

Google Scholar

[26] R.L. Fleischer, L.G. Turner, Geophysical and Geochemical Anomaly in NE New York. Geophysics 49 (1984) 818-822.

DOI: 10.1190/1.1441710

Google Scholar

[27] R.L. Fleischer, L.G. Turner, Correlations of radon and carbon isotopic measurements with petroleum and natural gas at Cement, Oklahoma, Geophysics 49 (1984) 810-817.

DOI: 10.1190/1.1441709

Google Scholar

[28] J. Ishankuliev, S.P. Tretyakova, Radon measurements using SSNTD in the region of oil and gas deposits of West Turkemanistan, Nucl. Tracks Rad. Meas. 19 (1991) 329-331.

DOI: 10.1016/1359-0189(91)90206-w

Google Scholar

[29] A. Tilstey, Investigation of Soil Gas Radon as a Petroleum Technique, Ontario Geological Survey, Open File Report 5876, Ministry of Northern Development and Mines, Canada, (1993).

Google Scholar

[30] D. Schumacher, Surface geochemical exploration for petroleum, in: T. Beaumont, N. Foster (Eds. ), Exploring for Oil and Gas Traps, American Association of Petroleum Geologists, Treatise of Petroleum Geology Handbook, Tulsa, OK, 1999, p.18.

DOI: 10.1306/trhbk624c19

Google Scholar

[31] J.A. Nunn, P. Meulbrock, Kilometer-Scale Upward Migration of Hydrocarbons in Geo-pressured sediments by Buoyancy-Driven Propagation of Methane-Filled fractures, AAPG Bull. 86(5) (2002) 907-918.

DOI: 10.1306/61eedbd4-173e-11d7-8645000102c1865d

Google Scholar

[32] D. Schumacher, Hydrocarbon-induced alteration of soils and sediments, in: D. Schumacher, M.A. Abrams (Eds. ), Hydrocarbon Migration and Its Near-Surface Expression, AAPG Memoir 66 (1996) 71-89.

DOI: 10.1306/m66606c6

Google Scholar

[33] S. Pilong, F. Bihong, N. Yoshiki, Mapping hydrocarbon seepage-induced anomalies in the arid region, West China using multispectral remote sensing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science 38(8) (2010).

Google Scholar

[34] B. Papp, A. Szakács, T. Néda, N. Frunzeti, K. Szacsvai, C. Cosma, Soil radon and thoron activity concentrations and CO2 flux measurements in the Neogene volcanic region of the Eastern Carpathians (Romania), Carpathian J. Earth Environ. Sci. 9(1) (2014).

DOI: 10.1111/j.1468-8123.2010.00318.x

Google Scholar

[35] B. Papp, A. Szakács, T. Néda, Sz. Papp, C. Cosma, Soil radon and thoron studies near the mofettes at Harghita Bai (Romania) and their relation to the field location of fault zones, Geofluids 10 (2010) 586-593.

DOI: 10.1111/j.1468-8123.2010.00318.x

Google Scholar

[36] D. Palacios, E. Fusella, Y. Avila, J. Salas, D. Teixeira, G. Fernández, A. Salas, L. Sajo-Bohus, E. Greaves, H. Barros, M. Bolívar, J. Regalado, Radon measurements over a natural-gas contaminated aquifer, Radiat. Meas. 50 (2013) 116-120.

DOI: 10.1016/j.radmeas.2012.10.016

Google Scholar

[37] G.P. Robertson, GS+: Geo-statistics for the Environmental Science, Gamma Design Software, Plainwell, Michigan, USA, (2008).

Google Scholar

[38] F.H. Seguin, J.A. Frenje, C.K. Li, D.G. Hicks, S. Kurebayashi, J. R Rygg, B.E. Schwartz, R.D. Petrasso, S. Roberts, R.D. Soures, D.D. Meyerhofer, T.C. Sangster, J.P. Knauer, T.W. Phillips, R.J. Leeper, K. Fletcher, S. Padalino, Spectrometry of charged particles from inertial-confinement-fusion plasmas, Rev. Sci. Instrum. 74 (2003).

DOI: 10.1063/1.1518141

Google Scholar

[39] M. Izerrouken, J. Skvarč, R. Ilić, Low energy alpha particle spectroscopy using CR-39 detector, Radiat. Meas. 31(1-6) (1999) 141-144.

DOI: 10.1016/s1350-4487(99)00148-1

Google Scholar

[40] G. Espinosa, A. Amero, R.B. Gammage, Measurements of Alpha Particle Energy using Nuclear Tracks in Solids Methodology, Rad. Protect. Dosim. 101(1-4) (2002) 561-564.

DOI: 10.1093/oxfordjournals.rpd.a006049

Google Scholar

[41] D. Nikezic, K.N. Yu, Formation and growth of tracks in nuclear track materials, Mater. Sci. Eng. 46 (2004) 51-123.

Google Scholar

[42] M. Fromm, F. Membrey, A. El Rahamany, A. Chambaudet, Principle of light ions micromapping and dosimetry using a CR-39 polymeric detector: Modelized and experimental uncertainties, Nucl. Tracks Radiat. Meas. 21(3) (1993) 357-365.

DOI: 10.1016/0969-8078(93)90230-2

Google Scholar

[43] A.H. Khayrat, S.A. Durrani, Variation of alpha-particle track diameter in CR-39 as a function of residual energy and etching conditions, Radiat. Meas. 30 (1999) 15-18.

DOI: 10.1016/s1350-4487(98)00089-4

Google Scholar

[44] B. Dörschel, D. Hermsdorf, S. Pieck, S. Starke, H. Thiele, F. Weickert, Studies of SSNTDs made from LR-115 in view of their applicability in radiobiological experiments with alpha particles, Nucl. Instr. Meth. Phys. Res. B 207 (2003) 154-164.

DOI: 10.1016/s0168-583x(03)00452-x

Google Scholar

[45] K.N. Yu, D. Nikezic, F.M.F. Ng, J.K.C. Leung, Long-term measurements of radon progeny concentrations with solid-state nuclear track detectors, Radiat. Meas. 40 (2005) 560-568.

DOI: 10.1016/j.radmeas.2005.03.007

Google Scholar

[46] C.J. Soares, I. Alencar, S. Guedes, R.H. Takizawa, B. Smilgys, J.C. Hadler, Alpha spectrometry study on LR 115 and Makrofol through measurements of track diameter, Radiat. Meas. 50 (2013) 246-248.

DOI: 10.1016/j.radmeas.2012.06.010

Google Scholar

[47] N.F. Santos, P.J. Iunes, S.R. Paulo, S. Guedes, J.C. Hadler, CR-39 alpha particle spectrometry for the separation of the radon decay product 214Po from thoron decay product 212Po, Radiat. Meas. 45 (2010) 823-826.

DOI: 10.1016/j.radmeas.2010.03.001

Google Scholar

[48] A.A.R. Da Silva, E.M. Yoshimura, Track analysis system for application in alpha particle detection with plastic detectors, Radiat. Meas. 39 (2005) 621-625.

DOI: 10.1016/j.radmeas.2004.06.018

Google Scholar

[49] D. Nikezic, A. Janicijevic, Bulk etching rate of LR-115 detectors, Appl. Rad. Isot. 57 (2002) 275-278.

Google Scholar

[50] M. Fromm, F. Membrey, A. Chambaudet, R. Saouli, Proton and alpha track profiles in CR39 during etching and their implications on track etching models, Int. J. Rad. App. Instr. Part D, Nucl. Tracks Rad. Meas. 19(1-4) (1991) 163-168.

DOI: 10.1016/1359-0189(91)90165-e

Google Scholar

[51] R. Martín-Landrove, L. Sajo-Bohus, D. Palacios, Nuclear Track Evolution by Capillary Condensation during Etching in SSNT Detectors, Radiat. Meas. 50 (2013) 241-245.

DOI: 10.1016/j.radmeas.2012.06.012

Google Scholar

[52] S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection: Principles, Methods and Applications. Pergamon Press, Oxford, (1987).

Google Scholar

[53] Information on http: /www. srim. org.

Google Scholar

[54] D. Palacios, L. Sajo-Bohus, H. Barros, E.D. Greaves, Alternative method to determine the bulk etch rate of LR-115 detectors, Rev. Mex. Fis. 55 (2010) 22-25.

Google Scholar

[55] D. Marocco, F. Bochicchio, Experimental determination of LR-115 detector efficiency for exposure to alpha particles, Radiat. Meas. 34(1-6) (2001) 509-512.

DOI: 10.1016/s1350-4487(01)00217-7

Google Scholar

[56] D. Palacios, L. Sajo-Bohus, H. Barros, E.D. Greaves, E. Fusella, J. Sojo, Y. Avila, Analysis and correction of track overlapping on nuclear track detectors (SSNTD), Rev. Mex. Fís. 57(1) (2011) 34-39.

Google Scholar

[57] L.A. LeSchack, D. Van Alstine, High-resolution ground magnetic (HRGM) and radiometric surveys for hydrocarbon exploration: Six case histories in western Canada, in: D. Schumacher, L.A. LeSchack (Eds. ), Surface Exploration Case Histories: Applications of geochemistry, magnetic, and remote sensing, AAPG Studies in Geology No. 48 and SEG Geophysical References Series No. 11, 2002, pp.67-156.

DOI: 10.1306/st48794c5

Google Scholar

[58] G.J. Sánchez, N. Baptista, M. Parra, L. Montilla, O.J. Guzmán, A. Finno, The Monagas Fold-Thrust belt of Eastern Venezuela. Part II: Structural and paleo-geographic controls on the turbidite reservoir potential of the middle Miocene foreland sequence, Mar. Petrol. Geol. 28 (2011).

DOI: 10.1016/j.marpetgeo.2010.01.021

Google Scholar

[59] D.B. Sikka, R.B. Shives, Mechanisms to explain the formation of geochemical anomalies over oilfields. AAPG Hedberg Conference: Near-Surface Hydrocarbon Migration: Mechanisms and Seepage Rates, September 16-19, Vancouver, BC, Canada (2001).

Google Scholar

[60] D. Palacios, H. Barros, J. Salas, E. Fusella, Y. Avila, D. Teixeira, Técnicas radiométricas superficiales en la exploración petrolera, Venezuelan J. Earth Sci. (GEOS) 44 (2013) 83-92.

Google Scholar

[61] D. Palacios, J. Salas, H. Barros, E. Fusella, Y. Avila, D. Teixeira, M. Bolívar, J. Regalado, Radiactividad gamma y radón sobre un campo petrolero con aguas freáticas contaminadas por gas natural, Venezuelan J. Earth Sci. (GEOS) 44 (2013) 93-103.

DOI: 10.1016/j.radmeas.2012.10.016

Google Scholar

[62] R. Hus, B. Dehandschutter, V.A. Bobrov, N.E. Acopachov, Active fault identification using radon measurements around Lake Teletskoye (Altai, Russia). Royal Museum of Central Africa, Annual Report 1997-1998 (1999), pp.177-201.

Google Scholar

[63] M. Medina, Caracterización geofísica en la zona del campo Tascabaña, estado Anzoátegui, aplicando métodos magnetotelúricos, Thesis, Universidad Central de Venezuela, Caracas, (2011) 65 p.

Google Scholar