[1]
IAEA, GEOSCIENCES (B3100), Proceedings Symposium on exploration of uranium ore deposits, Vienna, Austria; 29 Mar - 2 Apr, IAEA-SM-208/52, (1976).
Google Scholar
[2]
N.P. Singh, M. Singh, S. Singh, H.S. Virk, Uranium and radon estimation in water and plants using SSNTD, Nucl. Tracks Rad. Meas. 8 (1984) 483-486.
DOI: 10.1016/0735-245x(84)90147-9
Google Scholar
[3]
A. Lopez, L. Gutiérrez, A. Razo, M. Balcázar, Radon mapping for location geothermal energy source, Nucl. Instrum. Meth. Phys. Res. A 255(1-2) (1987) 426-429.
Google Scholar
[4]
M. Balcázar, A. López Martínez, M. Huerta, J.H. Flores Ruíz, P. Peña, Use of Environmental Radioactive Isotopes in Geothermal Prospecting, Proceedings 17th Pacific Basin Nuclear Conference, Cancún, Q.R., México, October 24-30, 2010, pp.1-8.
Google Scholar
[5]
A. Rodriguez, Y. Torres, L. Chavarria, F. Molina, Soil Gas Radon Measurement as A Tool to Identify Permeabel Zones at Las Pailas Geothermal Area, Costa Rica. Geothermal Training Programe 30th Anniversary workshop Orkustofnun, Grensasvegur 9, Iceland, August 26-27, (2008).
Google Scholar
[6]
N.K. Phuong, A. Harijoko, R. Itoi, Y. Unoki, Water geochemistry and soil gas survey at Ungaran geothermal field, Central Java, Indonesia, J. Volcanology Geothermal Res. 229-230 (2012) 23-33.
DOI: 10.1016/j.jvolgeores.2012.04.004
Google Scholar
[7]
C. Karingithi, J. Wambugu, The Geochemistry of Arus and Bogoria Geothermal Prospect, Proceedings World Geothermal Congress 2010 Bali, Indonesia, 25-29 April 2010, pp.1-6.
Google Scholar
[8]
K. Ioannides, C. Papachristodoulou, K. Stamoulis, D. Karamanis, S. Pavlides, A. Hatzipetros, E. Karakala, Soil Gas Radon: A Tool for Exploring Active Fault Zones, Appl. Rad. Isot. 59(2-3) (2003) 205-213.
DOI: 10.1016/s0969-8043(03)00164-7
Google Scholar
[9]
G. Jönsson, Radon gas - where from and what to do? Radiat. Meas. 25(1-4) (1995) 537-546.
Google Scholar
[10]
J. Swakon, K. Kozak, M. Paszkowski, R. Gradzin'ski, J. Loskiewicz, J. Mazur, M. Janik, J. Bogacz, T. Horwacik. P. Olko, Radon concentration in Soil Gas around local disjunctive Tectonic zones in the Krakow Area, J. Envir. Radioact. 78(2) (2004).
DOI: 10.1016/j.jenvrad.2004.04.004
Google Scholar
[11]
N. Segovia, M.A. Armienta, C. Valdes, M. Mena, J.L. Seidel, M. Monnin, P. Pena, M.B.E. Lopez, A.V. Reyes, Volcanic monitoring for radon and chemical species in the soil and in spring water samples, Radiat. Meas. 36 (2003) 379-383.
DOI: 10.1016/s1350-4487(03)00155-0
Google Scholar
[12]
H.S. Virk, Correlation of radon anomalies with micro-earthquakes in Kangra and Chamba valleys of N-W Himalaya. Kangra Earthquake Centenary Seminar (KECS-2005), Special Publ. No. 85, GSI (NR), Lucknow (2005), pp.151-160.
DOI: 10.22201/igeof.00167169p.2000.39.3.327
Google Scholar
[13]
C. Cigolini, G. Gervino, R. Bonetti, F. Conte, M. Laiolo, D. Coppola, A. Manzoni, Tracking precursors and degassing by radon monitoring during major eruptions at Stromboli Volcano (Aeolian Islands, Italy), Geophys. Res. Lett. 32 (2005).
DOI: 10.1029/2005gl022606
Google Scholar
[14]
V. Walia, S. Mahajan, A. Kumar, S. Singh, B.S. Bajwa, T.F. Yang, Fault delineation study using soil-gas method in Dharamsala area, NW Himalayas, India, Radiat. Meas. 43 (2008) S337-S342.
DOI: 10.1016/j.radmeas.2008.04.071
Google Scholar
[15]
T.F. Yang, V. Walia, L.L. Chyi, C.C. Fu, C.H. Chen, T.K. Liu, S. R. Song, C.Y. Lee, M. Lee, Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan, Radiat. Meas. 40 (2005) 496-502.
DOI: 10.1016/j.radmeas.2005.05.017
Google Scholar
[16]
G. Imme, S. La Delfa, S. Lo Nigro, D. Morelli, G. Patane, Soil radon concentration and volcanic activity of Mt. Etna before and after the 2002 eruption. Radiat. Meas. 41 (2006) 241-245.
DOI: 10.1016/j.radmeas.2005.06.008
Google Scholar
[17]
P. Gasparini, S.M. Mantovani, Radon anomalies and volcanic eruptions. J. Volcan. Geothermal Res. 3 (1978) 325-341.
DOI: 10.1016/0377-0273(78)90042-2
Google Scholar
[18]
S. Munadi, R.A. Saputro, A. Sutarman, Exploration of natural gas using nuclear radiation. Min. Ener. J. 9 (2010) 1-4.
Google Scholar
[19]
L. Zuhui, W. Yujin, C. Donrong, L. Youming, X. Aijun, J. Fuxing, Prospecting Oil and Gas Using CR-39 Detector, Nucl. Tracks Radiat. Meas. 22 (1993) 387-392.
DOI: 10.1016/0969-8078(93)90091-h
Google Scholar
[20]
J.E. Tilsley, H. Veldhuyzen, R. R Nicholls, Soil radon gas study of southern Ontario; Ontario Geological Survey, Open File Report 5847 (1993) 148-149.
Google Scholar
[21]
G.A. Duddridge, Observations on soil-gas variations in the Bovey Basin, Proceedings of the Ussher Society 8 (1994) 331-335.
Google Scholar
[22]
R. Patrick, P. Frédéric, P.K. Bharat, G. Frédéric, B. Mukunda, N.S. Soma, Temporal signatures of advective versus diffusive radon transport at a geothermal zone in Central Nepal, J. of Envir. Radioact. 102 (2011) 88-102.
DOI: 10.1016/j.jenvrad.2010.10.005
Google Scholar
[23]
G. Etiope, S. Lombardi, Evidence for radon transport by carrier gas through faulted clays in Italy. J. Radioanal. Nucl. Chem. 193 (1995) 291-300.
DOI: 10.1007/bf02039886
Google Scholar
[24]
L. Morawska, C.R. Phillip, Dependence of the radon emanation coefficient on radium distribution and internal structure of the material, Geochim. Cosmochim. Acta 57 (1993) 1783-1797.
DOI: 10.1016/0016-7037(93)90113-b
Google Scholar
[25]
T.K. Ball, D.G. Cameron, T.B. Colman, P.D. Roberts, Behaviour of radon in the geological environment: a review, Engineer. Geo. 24 (1991) 169-182.
DOI: 10.1144/gsl.qjeg.1991.024.02.01
Google Scholar
[26]
R.L. Fleischer, L.G. Turner, Geophysical and Geochemical Anomaly in NE New York. Geophysics 49 (1984) 818-822.
DOI: 10.1190/1.1441710
Google Scholar
[27]
R.L. Fleischer, L.G. Turner, Correlations of radon and carbon isotopic measurements with petroleum and natural gas at Cement, Oklahoma, Geophysics 49 (1984) 810-817.
DOI: 10.1190/1.1441709
Google Scholar
[28]
J. Ishankuliev, S.P. Tretyakova, Radon measurements using SSNTD in the region of oil and gas deposits of West Turkemanistan, Nucl. Tracks Rad. Meas. 19 (1991) 329-331.
DOI: 10.1016/1359-0189(91)90206-w
Google Scholar
[29]
A. Tilstey, Investigation of Soil Gas Radon as a Petroleum Technique, Ontario Geological Survey, Open File Report 5876, Ministry of Northern Development and Mines, Canada, (1993).
Google Scholar
[30]
D. Schumacher, Surface geochemical exploration for petroleum, in: T. Beaumont, N. Foster (Eds. ), Exploring for Oil and Gas Traps, American Association of Petroleum Geologists, Treatise of Petroleum Geology Handbook, Tulsa, OK, 1999, p.18.
DOI: 10.1306/trhbk624c19
Google Scholar
[31]
J.A. Nunn, P. Meulbrock, Kilometer-Scale Upward Migration of Hydrocarbons in Geo-pressured sediments by Buoyancy-Driven Propagation of Methane-Filled fractures, AAPG Bull. 86(5) (2002) 907-918.
DOI: 10.1306/61eedbd4-173e-11d7-8645000102c1865d
Google Scholar
[32]
D. Schumacher, Hydrocarbon-induced alteration of soils and sediments, in: D. Schumacher, M.A. Abrams (Eds. ), Hydrocarbon Migration and Its Near-Surface Expression, AAPG Memoir 66 (1996) 71-89.
DOI: 10.1306/m66606c6
Google Scholar
[33]
S. Pilong, F. Bihong, N. Yoshiki, Mapping hydrocarbon seepage-induced anomalies in the arid region, West China using multispectral remote sensing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science 38(8) (2010).
Google Scholar
[34]
B. Papp, A. Szakács, T. Néda, N. Frunzeti, K. Szacsvai, C. Cosma, Soil radon and thoron activity concentrations and CO2 flux measurements in the Neogene volcanic region of the Eastern Carpathians (Romania), Carpathian J. Earth Environ. Sci. 9(1) (2014).
DOI: 10.1111/j.1468-8123.2010.00318.x
Google Scholar
[35]
B. Papp, A. Szakács, T. Néda, Sz. Papp, C. Cosma, Soil radon and thoron studies near the mofettes at Harghita Bai (Romania) and their relation to the field location of fault zones, Geofluids 10 (2010) 586-593.
DOI: 10.1111/j.1468-8123.2010.00318.x
Google Scholar
[36]
D. Palacios, E. Fusella, Y. Avila, J. Salas, D. Teixeira, G. Fernández, A. Salas, L. Sajo-Bohus, E. Greaves, H. Barros, M. Bolívar, J. Regalado, Radon measurements over a natural-gas contaminated aquifer, Radiat. Meas. 50 (2013) 116-120.
DOI: 10.1016/j.radmeas.2012.10.016
Google Scholar
[37]
G.P. Robertson, GS+: Geo-statistics for the Environmental Science, Gamma Design Software, Plainwell, Michigan, USA, (2008).
Google Scholar
[38]
F.H. Seguin, J.A. Frenje, C.K. Li, D.G. Hicks, S. Kurebayashi, J. R Rygg, B.E. Schwartz, R.D. Petrasso, S. Roberts, R.D. Soures, D.D. Meyerhofer, T.C. Sangster, J.P. Knauer, T.W. Phillips, R.J. Leeper, K. Fletcher, S. Padalino, Spectrometry of charged particles from inertial-confinement-fusion plasmas, Rev. Sci. Instrum. 74 (2003).
DOI: 10.1063/1.1518141
Google Scholar
[39]
M. Izerrouken, J. Skvarč, R. Ilić, Low energy alpha particle spectroscopy using CR-39 detector, Radiat. Meas. 31(1-6) (1999) 141-144.
DOI: 10.1016/s1350-4487(99)00148-1
Google Scholar
[40]
G. Espinosa, A. Amero, R.B. Gammage, Measurements of Alpha Particle Energy using Nuclear Tracks in Solids Methodology, Rad. Protect. Dosim. 101(1-4) (2002) 561-564.
DOI: 10.1093/oxfordjournals.rpd.a006049
Google Scholar
[41]
D. Nikezic, K.N. Yu, Formation and growth of tracks in nuclear track materials, Mater. Sci. Eng. 46 (2004) 51-123.
Google Scholar
[42]
M. Fromm, F. Membrey, A. El Rahamany, A. Chambaudet, Principle of light ions micromapping and dosimetry using a CR-39 polymeric detector: Modelized and experimental uncertainties, Nucl. Tracks Radiat. Meas. 21(3) (1993) 357-365.
DOI: 10.1016/0969-8078(93)90230-2
Google Scholar
[43]
A.H. Khayrat, S.A. Durrani, Variation of alpha-particle track diameter in CR-39 as a function of residual energy and etching conditions, Radiat. Meas. 30 (1999) 15-18.
DOI: 10.1016/s1350-4487(98)00089-4
Google Scholar
[44]
B. Dörschel, D. Hermsdorf, S. Pieck, S. Starke, H. Thiele, F. Weickert, Studies of SSNTDs made from LR-115 in view of their applicability in radiobiological experiments with alpha particles, Nucl. Instr. Meth. Phys. Res. B 207 (2003) 154-164.
DOI: 10.1016/s0168-583x(03)00452-x
Google Scholar
[45]
K.N. Yu, D. Nikezic, F.M.F. Ng, J.K.C. Leung, Long-term measurements of radon progeny concentrations with solid-state nuclear track detectors, Radiat. Meas. 40 (2005) 560-568.
DOI: 10.1016/j.radmeas.2005.03.007
Google Scholar
[46]
C.J. Soares, I. Alencar, S. Guedes, R.H. Takizawa, B. Smilgys, J.C. Hadler, Alpha spectrometry study on LR 115 and Makrofol through measurements of track diameter, Radiat. Meas. 50 (2013) 246-248.
DOI: 10.1016/j.radmeas.2012.06.010
Google Scholar
[47]
N.F. Santos, P.J. Iunes, S.R. Paulo, S. Guedes, J.C. Hadler, CR-39 alpha particle spectrometry for the separation of the radon decay product 214Po from thoron decay product 212Po, Radiat. Meas. 45 (2010) 823-826.
DOI: 10.1016/j.radmeas.2010.03.001
Google Scholar
[48]
A.A.R. Da Silva, E.M. Yoshimura, Track analysis system for application in alpha particle detection with plastic detectors, Radiat. Meas. 39 (2005) 621-625.
DOI: 10.1016/j.radmeas.2004.06.018
Google Scholar
[49]
D. Nikezic, A. Janicijevic, Bulk etching rate of LR-115 detectors, Appl. Rad. Isot. 57 (2002) 275-278.
Google Scholar
[50]
M. Fromm, F. Membrey, A. Chambaudet, R. Saouli, Proton and alpha track profiles in CR39 during etching and their implications on track etching models, Int. J. Rad. App. Instr. Part D, Nucl. Tracks Rad. Meas. 19(1-4) (1991) 163-168.
DOI: 10.1016/1359-0189(91)90165-e
Google Scholar
[51]
R. Martín-Landrove, L. Sajo-Bohus, D. Palacios, Nuclear Track Evolution by Capillary Condensation during Etching in SSNT Detectors, Radiat. Meas. 50 (2013) 241-245.
DOI: 10.1016/j.radmeas.2012.06.012
Google Scholar
[52]
S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection: Principles, Methods and Applications. Pergamon Press, Oxford, (1987).
Google Scholar
[53]
Information on http: /www. srim. org.
Google Scholar
[54]
D. Palacios, L. Sajo-Bohus, H. Barros, E.D. Greaves, Alternative method to determine the bulk etch rate of LR-115 detectors, Rev. Mex. Fis. 55 (2010) 22-25.
Google Scholar
[55]
D. Marocco, F. Bochicchio, Experimental determination of LR-115 detector efficiency for exposure to alpha particles, Radiat. Meas. 34(1-6) (2001) 509-512.
DOI: 10.1016/s1350-4487(01)00217-7
Google Scholar
[56]
D. Palacios, L. Sajo-Bohus, H. Barros, E.D. Greaves, E. Fusella, J. Sojo, Y. Avila, Analysis and correction of track overlapping on nuclear track detectors (SSNTD), Rev. Mex. Fís. 57(1) (2011) 34-39.
Google Scholar
[57]
L.A. LeSchack, D. Van Alstine, High-resolution ground magnetic (HRGM) and radiometric surveys for hydrocarbon exploration: Six case histories in western Canada, in: D. Schumacher, L.A. LeSchack (Eds. ), Surface Exploration Case Histories: Applications of geochemistry, magnetic, and remote sensing, AAPG Studies in Geology No. 48 and SEG Geophysical References Series No. 11, 2002, pp.67-156.
DOI: 10.1306/st48794c5
Google Scholar
[58]
G.J. Sánchez, N. Baptista, M. Parra, L. Montilla, O.J. Guzmán, A. Finno, The Monagas Fold-Thrust belt of Eastern Venezuela. Part II: Structural and paleo-geographic controls on the turbidite reservoir potential of the middle Miocene foreland sequence, Mar. Petrol. Geol. 28 (2011).
DOI: 10.1016/j.marpetgeo.2010.01.021
Google Scholar
[59]
D.B. Sikka, R.B. Shives, Mechanisms to explain the formation of geochemical anomalies over oilfields. AAPG Hedberg Conference: Near-Surface Hydrocarbon Migration: Mechanisms and Seepage Rates, September 16-19, Vancouver, BC, Canada (2001).
Google Scholar
[60]
D. Palacios, H. Barros, J. Salas, E. Fusella, Y. Avila, D. Teixeira, Técnicas radiométricas superficiales en la exploración petrolera, Venezuelan J. Earth Sci. (GEOS) 44 (2013) 83-92.
Google Scholar
[61]
D. Palacios, J. Salas, H. Barros, E. Fusella, Y. Avila, D. Teixeira, M. Bolívar, J. Regalado, Radiactividad gamma y radón sobre un campo petrolero con aguas freáticas contaminadas por gas natural, Venezuelan J. Earth Sci. (GEOS) 44 (2013) 93-103.
DOI: 10.1016/j.radmeas.2012.10.016
Google Scholar
[62]
R. Hus, B. Dehandschutter, V.A. Bobrov, N.E. Acopachov, Active fault identification using radon measurements around Lake Teletskoye (Altai, Russia). Royal Museum of Central Africa, Annual Report 1997-1998 (1999), pp.177-201.
Google Scholar
[63]
M. Medina, Caracterización geofísica en la zona del campo Tascabaña, estado Anzoátegui, aplicando métodos magnetotelúricos, Thesis, Universidad Central de Venezuela, Caracas, (2011) 65 p.
Google Scholar