p.1
p.69
p.93
p.126
p.139
p.177
p.202
p.226
Magnetic Nanoparticles: Synthesis and Properties
Abstract:
The discovery of novel materials, processes, and phenomena at the nanoscale and the development of new experimental and theoretical techniques for research provide fresh opportunities for the development of innovative nanosystems and nanostructured materials. Nanomaterials with tailored unique properties have limitless possibilities in materials science. The most widely used synthesis routes for iron oxide nanoparticles are based on precipitation from solution. Most of the nanoparticles available to date have been prepared using chemical route. Physical processes have also been recently developed to produce high quality monodisperse and monocrystalline iron oxide nanoparticles. Magnetite has recently attracted attention because bulk Fe3O4 has a high Curie temperature of 850 K and nearly full spin polarization at room temperature, and due to its wide range of applications in almost all branches of science and technology. Clearly, nanoscale magnetite offers potential for creation of novel technology in multiple fields of study. Opportunities for magnetite nanoparticles to be effectively incorporated into environmental contaminant removal and cell separation magnetically guided drug delivery, imaging of tissue and organs, magnetocytolysis, sealing agents (liquid O-rings), dampening and cooling mechanisms in loudspeakers, high gradient magnetic separation (HGMS) techniques and contrasting agents for magnetic resonance imaging (MRI). Advancement of synthesis and stabilization procedures towards production of uniformly sized, dispersed (potentially embedded) magnetite nanoparticles has clearly inspired creative imagination and application in various fields.
Info:
Periodical:
Pages:
177-201
Citation:
Online since:
October 2015
Authors:
Keywords:
Price:
Сopyright:
© 2016 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] O. Kahn, Molecular Magnetism, VCH Publishers, Inc., New York (1993).
[2] C. M. Hurd, Varieties of magnetic order in Solids, Contemp. Phys. 23(5) (1982) 469-493.
[3] B. Bhushan, V. N. Koinkar, Microtribology of metal particle, barium ferrite and metal evaporated magnetic tapes, Wear 181-183 (1995) 360–370.
[4] B. Bhushan, and X. Li, Micromechanical and tribological characterization of doped single-crystal silicon and poly-silicon films for micro-electromechanical systems devices, J. Mater. Res. 12 (1997) 54–63.
[5] U. Ozgur, Y. Alivov, H. Morkoc, Microwave ferrites, Part 1: Fundamental properties, J. Mater Sci: Mater. Electron. 20 (2009) 789-834.
[6] M. N. Giriya, C. L. Khobaragade, K. G. Rewatkar, R.P. Tandon, Structural analysis and magnetic properties of substituted Ca-Sr hexaferrites, Inter. J. Sci. Engg. Res. 3(10), 2012 1-4.
[7] Robert C. Pullar, Hexagonal Ferrites: A Review of the synthesis, properties and applications of haxaferrite ceramics, Prog. Mater. Sci. 57 (2012) 1191-1334.
[8] S. Sun and H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124(28) (2002) 8204-8205.
DOI: 10.1021/ja026501x
[9] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 126(1) (2004) 273-279.
DOI: 10.1021/ja0380852
[10] H. Vallhov, J. Qin, S. M. Johansson, N. Ahlborg, M. A. Muhammed, A. Scheynius, and S. Gabrielsson, The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications, Nano Lett. 6(8) (2006).
DOI: 10.1021/nl060860z
[11] K. Schulze, A. Koch, A. Petri-Fink, B. Steitz, S. Kamau, M. Hottiger, M. Hilbe, L. Vaughan, M. Hofmann, and H. Von Rechenberg, Uptake and biocompatibility of functionalized poly(vinylalcohol) coated superparamagnetic maghemite nanoparticles by synoviocytes in vitro, J. Nanosci. Nanotech. 6(9-10) (2006).
DOI: 10.1166/jnn.2006.484
[12] M. Mikhaylova, D. K. Kim, N. Bobrysheva, M. Osmolowsky, V. Se-menov, T. . sakalakos, and M. Muhammed, Superparamagnetism of magnetite nanoparticles: Dependence on surface modification, Langmuir 20 (6) (2004) 2472.
DOI: 10.1021/la035648e
[13] T. Hibma, F. C. Voogt, L. Niesen , Heijden van der, W. J. M. De Jonge, J. Donkers, and P. J. Zaag. van der, Anti-phase domains and magnetism in epitaxial magnetite layers, J. Appl. Phys. 85(8) (1999) 5291-5293.
DOI: 10.1063/1.369857
[14] A. Petri-Fink, M. Chastellain, A. Juillerat-Jeanneret, A. Ferrari, and H. Hofmann, Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells, Biomater. 26(15) (2005) 2685-2694.
[15] M. Taupitz, J. Schnorr, C. Abramjuk, S. Wagner, S. Pilgrimm, H. Hunigen, and B. Hamm , New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits, J. Magn. Reson. Imaging 12(6) (2000).
DOI: 10.1002/1522-2586(200012)12:6<905::aid-jmri14>3.0.co;2-5
[16] S. Huth, J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, and J. Rosenecker, Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer, J. Gene. Med. 6(8) (2004) 923-936.
DOI: 10.1002/jgm.577
[17] J. F. Berret, N. Schonbeck, F. Gazeau, D. E. Kharrat, O. Sandre, A. Vacher, and M. Airiau, Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging, J. Am. Chem. Soc. 128(5) (2006).
DOI: 10.1021/ja0562999
[18] C. Sun, R. Sze, and M. Zhang, Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI, J. Biomed. Mater. Res. A 78 (3) (2006) 550-557.
DOI: 10.1002/jbm.a.30781
[19] A. K. Gupta, and S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies, IEEE Trans. Nanobiosci. 3(1) (2004) 66-73.
[20] Z. Li, L. Wei, M. Y. Gao, and H. Lei, One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles, Adv. Mater. 17(8) (2005) 1001-1005.
[21] J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. g. Yoon, J. S. Suh, and J. Cheon, Artificially engineered magnetic particle for ultra-sensitive molecular imaging, Nat. Med. 13(1) (2007) 95-99.
DOI: 10.1038/nm1467
[22] N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, and M. Niederberger, Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubility, Chem. Mater. 17(11) (2005) 3044-3049.
DOI: 10.1021/cm050060+
[23] M. S. Martina, J. P. Fortin, C. Menager, O. Clement, G. Barratt, C. Grabielle-Madelmont, F. Gazeau , V. Cabuil, and S. Lesieur, Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging, J. Am. Chem. Soc. 127(30) (2005).
DOI: 10.1021/ja0516460
[24] S. J. Son, P. Reichel, J. B. He, M. Schuchman, and S. B. Lee, Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery, J. Am. Chem. Soc. 127(20) (2005) 7316-7317.
DOI: 10.1021/ja0517365
[25] J. H. Lee, Y. W. Jun, S. I. Yeon, J. S. Shin, and J. Cheon, Dual Mode Nanoparticle Probes forHigh Performance Magnetic Resonance and Fluorescence Imaging of Neuroblastoma. Angew. Chem. Int. Ed. Engl. 45(48) (2006) 8160-8162.
[26] J. L. Lyon, D. A. Fleming, M. B, Stone, P. Schiffer, and M. E. Williams, Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding, Nano Lett. 4(4) (2004) 719-723.
DOI: 10.1021/nl035253f
[27] Y. Deng, C. Wang, X. Shen, W. Yang, L. Jin, H. Gao, and S. Fu, Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells, Chem. – A Eur. J. 11(20) (2005).
[28] W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchansky, Y. Ding, Z. L. Wang, M. Swihart, and P. N. Prasad, A General Approach to Binary and Ternary Hybrid Nanocrystals, Nano Lett. 6(4) (2006) 875-881.
DOI: 10.1021/nl0600833
[29] E. Quesnel, E. Pauliac-Vaujour, V. Muffato, Modeling metallic nanoparticle synthesis in a magnetron-based naocluster source by gas condensation of sputtering vapour, J. Appl. Phys. 107 (4) (2010) 1023-1031.
DOI: 10.1063/1.3310420
[30] S. Pratontep, S. J. Carroll, C. Xirouchaki, M. Streun and R. E. Palmer, Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation, Rev. Sci. Instrum. 76 (2005) 045103-6.
DOI: 10.1063/1.1869332
[31] D. Jezequel, J. Guenot, N. Jouini and F. Fievet, Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics, J. Mater. Res. 10(1) (1995) 77-83.
[32] O. Palchik, J. Zhu and A. Gedanken, Microwave assisted preparation of binary, J. Mater. Chem. 10 (2000) 1251-1254.
DOI: 10.1039/a908795h
[33] S. Ammar, A. Helfen, N. Jouini, F. Fievet, I. Rosenman, F. Villain, P. Molinie and M. Danot. Magnetic properties of ultrafine cobalt ferriteparticles synthesized by hydrolysis in a polyol medium, J. Mater. Chem. 11 (2001) 186-192.
DOI: 10.1039/b003193n
[34] Ya-Mei Miao, Qi-Long Zhang, Hui Yang, Huan-Ping Wang, Low-temperature synthesis of nano-crystalline magnesium titanate materials by the sol–gel method, Mater. Sci. Engg. B 128 (2006) 103–106.
[35] B. D. Lee, H. R. Lee, K. H. Yoon, Y. S. Cho, Microwave Dielectric Properties of Magnesium Calcium Titanate Thin Films, Ceram. Int. 31(2005) 143–146.
[36] Y. Bai, J. Zhou, Z. Gui, L. Li, The magnetic and dielectric properties of multiferroic Sr-substituted Zn2-Y hexagonal ferrites, J. Magn. Magn. Mater. 246 (2002) 140-146.
[37] Y. Bai, J. Zhou, Z. Gui, Z. Yue, L. Li, Complex Y-Type Hexagonal Ferrites: An Ideal Material for HighFrequency Chip Magnetic Components, J. Magn. Magn. Mater. 264 (2003) 44-49.
[38] S. M. Abbas, A. K. Dixit, R. Chatterjee, T. C. Goel, Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composite, J. Magn. Magn. Mater. 309 (2007) 20-26.
[39] N.J. Shirtcliffe, S. Thompson, E.S.O. Keefe, S. Appleton, C.C. Perry, Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis, Mater. Res. Bull. 42 (2007) 281-286.
[40] M. J. Iqbal, M. N. Ashiq, I. H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method, J. Magn. Magn. Mater. 322 (2010) 1720–1726.
[41] S.W. Lee, S.Y. An, I. Shim, C.S. Kim, Mössbauer studies of La-Zn substitution effect in strontium ferrite nanoparticles, J. Magn. Magn. Mater. 290-291 (1) (2005) 231-233.
[42] M. M. Rashad, M. Radwan, M. M. Hessien, Effect of Fe/Ba mole ratios and surface-active agents on the formation and magnetic properties of co-precipitated barium hexaferrite, J. Alloy Compd. 453 (2008) 304-309.
[43] G. Mu, N. Chen, X. Pan, X. Shen, X. Gu, Preparation and microwave absorption properties of barium ferrite nanorods, Mater. Lett. 62 (2008) 840.
[44] O. Kubo, T. Ido, H. Yokoyama, Properties of Ba ferrite particles for perpendicular magnetic recording media, IEEE Trans. Magn. 18 (1982) 1122-1124.
[45] W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, Q. Yan, Preparation and Magnetic properties of Barium Hexaferrite Nanoparticles produced by the Citrate Process, J. Am. Ceram. Soc. 80 (1997) 3258-3262.
[46] A. Ataie, M.R. Piramoon, I.R. Harris, C.B. Ponton, Effect of hydrothermal synthesis environment on the particle morphology, chemistry and magnetic properties of barium hexaferrite, J. Mater. Sci. 30 (1995) 5600-5608.
DOI: 10.1007/bf00356692
[47] Y. Hakuta, T. Adschiri, T. Suzuki, T. Chida, K. Seino, K. Arai, Flow Method for Rapoidly Producing Barium Hexaferrite Particles in Supercritical water, J. Am. Ceram. Soc. 81 (1998) 2461-2464.
[48] V. Chhabra, M. Lal, A.N. Maitra,P. Ayyub, Nanophase BaFe12O19 synthesized from a non-aqueous microemulsion with Ba- and Fe-containing surfactants, J. Mater. Res. 10 (1995) 2689-2696.
[49] V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson, C.E. Johnson, Synthesis and characterization of ultrafine lithium ferrite from a citrate precursor J. Magn. Magn. Mater. 125 (1993) 199-208.
[50] V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson, C.E. Johnson, Synthesis and characterization of ultrafine lithium ferrite from a citrate precursor, J. Magn. Magn. Mater. 130 (1994) 288-292.
[51] W.A. Kaczmarek, B.W. Ninham, A. Calka, Structure and magnetic properties of aerosol synthesized barium ferrite particles, J. Appl. Phys. 70 (1991) 5909-5913.
DOI: 10.1063/1.350103
[52] M.V. Cabanas, J.M. Gonzalez-Calbet, M. Vallet-Regı, Synthesis of barium hexaferrite by pyrolysis of an aerosol, J. Mater. Res. 9 (1994) 712-716.
[53] K. C. Patil, S. T. Aruna and T. Mimani, Combustion synthesis: An update, Current opinion in Solid State Mater. Sci. 6 (2002) 507-512.
[54] H. J. Choi, K. M. Lee and J. G. Lee, Partial replacement of Mn ion in LiMn2O4 by Y+3 ions, J. Power Source 103 (2001) 154-159.
[55] S. Castro, M. Gayoso, J. Rivas, J. M. Greneche, J. Mira and C. Rodriguez, Structural and magnetic properties of Ba-hexaferrite nanostructured particles prepared by combustion method, J. Magn. Magn. Mater. 152 (1996) 61-64.
[56] A. C. Costa, F. M. Morelli, M. R. Kiminami, Microstructural and magnetic properties of Ni1-xZnxFe2O4 synthesized by combustion reaction, J. Mater. Sci. 42(3) (2007) 779–783.
[57] M. George, A. Mary John, S. S. Nair, P. A. Joy, M. R. Ananraman, Finite size effect on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders, J. Magn. Magn. Mater. 302(1) (2006) 190-195.
[58] M. Airimioaei, C. E. Ciomaga, N. Apostolescu, L. Leontie, A. R. Iordana, L. Mitoseriu, M. N. Palamarua, Synthesis and functional properties of the Ni1-xMnxFe2O4 ferrites, J. Alloy Compd. 509(31) (2011) 8065-8072.
[59] R. V. Mangalaraja, S. Ananthakumar, P. Manohar, F. D. Gnanam, Initial permeability studies of Ni–Zn ferrites prepared by flash combustion technique, Mater. Sci. Engg. A 355 (1–2) (2003) 320–324.
[60] R. K. Selvan, C. O. Augustin, L. J. Berchmans, R. Saraswathi, Combustion synthesis of CuFe2O4, Mater. Res. Bull. 38(1) (2003) 41–54.
[61] M. Sertkol, Y. Kōseoglu, A. Baykal, H. Kavas M.S. Toprak, Synthesis and magnetic characterization of Zn0. 7Ni0. 3Fe2O4 nanoparticles via microwave-assisted combustion route, Journal of Magnetism and Magnetic Materials, 22(7) (2010) 866–871.
[62] P. R. Moharkar, S. R. Gawali, K. G. Rewatkar, S. N. Sable and V. M. Nanoti, Influence of cobalt ions substitution on micro-structure, magnetic and acoustic properties of nanocrystalline calcium hexaferrite, Int. J. Know. Engg. 3 (1) (2012).
[63] L. Yu, S. Cao, Y. Liu, Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres, J. Magn. Magn. Mater. 301(1) (2006) 100– 106.
[64] K.H. Wu, T.H. Ting, M.C. Li, Sol–gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels, J. Magn. Magn. Mater. 298(1) (2006) 25– 32.
[65] T. Feried, G. Shemer, G. Markovich, Ordered Two-Dimensional Arrays of Ferrite Nanoparticles, Adv. Mater. 13 (15) (2001) 1158-1161.
DOI: 10.1002/1521-4095(200108)13:15<1158::aid-adma1158>3.0.co;2-6
[66] C. Liu, A. J. Rondinone, Z. J. Zhang, Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties, Pure Appl. Chem., 72(1-2) (2000) 37-45.
[67] K. Maaz, Arif Mumtaz, S. K. Hasanain, Abdullah Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, J. Magn. Magn. Mater. 308 (2007) 289-295.
[68] V. Pallai and D. O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions, J. Magn. Magn. Mater. 163 (1996) 243- 248.
[69] M. H. Keyder, Advances in magneto-optic recording technology, J. Magn. Magn. Mater. 83 (1990) 1-5.
[70] T. Kagotani, D. Fujiwara, S. Sugimoto, K. Inomata, and M. Homma, Enhancement of GHz electromagnetic wave absorption characteristics in aligned M-type barium ferrite Ba1-xLaxZnxFe12-x-y(Me0. 5Mn0. 5)yO19 (x = 0. 0–0. 5; y =1. 0–3. 0, Me: Zr, Sn) by metal substitution, J. Magn. Magn. Mater. E1813-E1815 (2004).
[71] T. Nakamura, T. Tsutaoka, and K. Hatakeyama, Frequency dispersion of permeability in ferrite composite materials, J. Magn. Magn. Mater. 138 (1994) 319-323.
[72] O. Kabo, T. Ido, and H. Yokoyama, Properties of Ba - Ferrite particles for 2perpendicular2recordings, IEEE Trans. Magn. 18 (1982) 1122-1128.
[73] W. Zhong, W. P. Ding, and N. Zhang, Key step in synthesis of ultra fine BaFe12O19 by sol-gel technique, J. Magn. Magn. Mater. 168 (1997) 196-210.
[74] S. E. Jacobo, C. Domingo-Pascual, and R. Rodriguez-Clement, Synthesis of ultrafine particles of barium ferrite by chemical co-precipitation, J. Mater. Sci. 32 (1997) 1025-1030.
[75] K. Haneda, C. Miyakawa, and H. Kojima, Preparation of High-Coercivity, J. Am. Ceram. Soc. 57 (1974) 354-359.
[76] N. K. Mukhopadhyay, V. Uhlenwinkel, V.C. Srivastava, Synthesis and Characterization of Bulk Al-Cu-Fe Based Quasicrystals and Composites by Spray Forming, J. Mater. Engg. Perfor. (2015) doi: 10. 1007/s11665-015-1442-0.
[77] H. Kumazawa, Y. Maeda and, and E. Sada, Further consideration of hydrothermal synthesis of barium ferrite fine particles, J. Mater. Sci. Lett. 14 (1995) 68- 70.
DOI: 10.1007/bf02565290
[78] V. Pillai, P. Kumar, and D. O. Shah, Magnetic properties of barium ferrite synthesized by using microemulsion mediated process, J. Magn. Magn. Mater. 116 (1992) 299-304.
[79] R. B. Jotania, R .B. Khomane, A. S. Deshpande, C. C. Chauhan, B .D. Kulkarni, Physical and Magnetic Properties of Barium Calcium Hexaferrite Nano- particles Synthesized by Water-in-oil Reverse Micelle and Co-precipitation Techniques, J. Sci. Res. 1(1) ( 2009) 1-13.
[80] Gomez-Romero, P. Hybrid organic-inorganic materials. In search of synergic activity, Adv. Mater. 13(3) (2001) 163-174.
DOI: 10.1002/1521-4095(200102)13:3<163::aid-adma163>3.0.co;2-u
[81] S.C. Wuang, K.G. Neoh, E.T. Kang, D.W. Pack, D.E. Leckb, Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine, J. Mater. Chem. 17 (2007) 3354-3362.
DOI: 10.1039/b702983g
[82] L. Zhang, and M. Wan, Polyaniline TiO2 composite nanotubes, J. Phys. Chem. B 107 (2003) 6748-6753.
[83] K. Hosono, I. Matsubara, N. Murayama, S. Woosuck, N. Izu, Synthesis of Polypyrrole/MoO3 Hybrid Thin Films and their Volatile Organic Compound Gas Sensing Properties, Chem. Mater. 17 (2005) 349-354.
DOI: 10.1021/cm0492641
[84] D. Chowdhury, A. Paul, A. Chattopadhyay, Photocatalytic polypyrole-TiO2- nanoparticles composite, their film generated at air-water interface, Langmuir 21 (2005) 4123-4128.
DOI: 10.1021/la0475425
[85] G. Qiu , Q. Wang , M. Nie , Polypyrrole Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation, Macromol, Mater. Engg. 291 (2006) 68- 72.
[86] D. D. Sawall, R. M. Villahermosa , R. A. Lipeles, A.R. Hopkins, Interfacial polymerization of polyaniline nanofibers grafted to Au surfaces, Chem. Mater. 16 (2004) 1606-1608.
DOI: 10.1021/cm0352908
[87] X. Feng, H. Huang, Q. Ye, J. Zhu, W. Hou, Ag/polypyrrole core-shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles, J. Phys. Chem. 111 (2007) 8463-8468.
DOI: 10.1021/jp071140z
[88] P. Herrasti, A. I. del Rio, J. Recio, Electrodeposition of homogeneous and adherent polypyrrole on copper for corrosion protection, Electrochim. Acta 52 (2007) 6496-6502.
[89] V. C. Srivastava, N. Ellendt, C. Meyer, V. Uhlenwinkel, Bulk synthesis of amorphous and nano‐crystalline materials by spray forming, Mater. Wissenschaft Werkstofftechnik 45(8) (2014) 425-429.
[90] E. J. Lavernia, Y. Wu, Spray Atomization and Deposition, John Wiley and Sons, West Sussex, England, 1996, p.155–260.
[91] P.S. Grant, Spray forming, Prog. Mater. Sci. 39 (1995) 497-545.
[92] V. C. Srivastava, R. K. Mandal, S. N. Ojha, Evolution of microstructure in spray formed Al-18% Si alloy, Mater. Sci. Engg. A 383 (2004) 14-19.
[93] P. Shukla, R. K. Mandal, S. N. Ojha, Non equilibrium solidification of undercooled droplets during atomization process, Bull. Mater. Sci. 24 (2001) 547-551.
DOI: 10.1007/bf02706729
[94] V.C. Srivastava, K.B. Surreddi, S. Scudino, M. Schowalter, V. Uhlenwinkel, A. Schulz, A. Rosenauer, H. -W. Zoch, J. Eckert, Microstructure and mechanical properties of partially amorphous Al85Y8Ni5Co2 plate produced by spray forming, Mater. Sci. Eng. A 527 (2010).
[95] V. C. Srivastava, K. B. Surreddi, V. Uhlenwinkel, A. Schulz, J. Eckert, H. -W. Zoch, Formation of Nanocrystalline Matrix Composite during Spray Forming of Al83La5Y5Ni5Co2, Metall. Mater. Trans. A 40 (2009) 450-456.
[96] E. J. Lavernia, J. D. Ayers, T. S. Srivatsan, Rapid solidification processing with specific application to aluminium alloys, Int. Mater. Rev. 37 (1992) 1-6.
[97] P. S. Grant, Solidification in spray forming, Metall. Mater. Trans. A 38 (2007) 1520-1523.
[98] V.C. Srivastava, R.K. Mandal, S.N. Ojha, K. Venkateswarlu, Microstructural modifications induced during spray deposition of Al-Si-Fe alloys and their mechanical properties, Mater. Sci. Eng. A 471 (2007) 38-42.
[99] V.C. Srivastava, V. Uhlenwinkel, A. Schulz, H.W. Zoch, N. K. Mukhopadhyay, S.G. Chowdhury, Synthesis of single phase i-AlCuFe bulk quasicrystal by spray forming, Z. Kristallogr. 223 (2008) 711-715.
[100] V. C. Srivastava, R. K. Mandal, S. N. Ojha, Microstructure and mechanical properties of Al–Si alloys produced by spray forming process, Mater. Sci. Engg. A 304–306 (2001) 555-558.
[101] V. C. Srivastava, R. K. Mandal, S. N. Ojha, Microstructural evolution during spray forming of an Al-18Si alloy, J. Mater. Sci. Lett. 20 (2001) 27- 32.
[102] E. Lester, P. Blood, J. Denyer, D. Giddings, B. Azzopardi, M. Poliakoff, "Reaction Engineering: The Supercritical Water Hydrothermal Synthesis of Nano-Particles, J. Supercrit. Fluid 37 (2006) 209–214.
[103] S. Kellici, K. A. Gong, T. A. Lin, S. Brown, R. J. H. Clark, M. Vickers, J.K. Cockcroft, V. Middelkoop, P. Barnes, J.M. Perkins, C.J. Tighe, J.A. Darr, High-throughput continuous hydrothermal flow synthesis of Zn–Ce oxides: unprecedented solubility of Zn in the nanoparticle fluorite lattice, Math. Phys. Engg. Sci. 368 (2010).
[104] C. S. Li, G. Melaet, W. T. Ralston, K. An, C. Brooks, Y. F. Ye, Y. S. Liu, J. F. Zhu, J. H. Guo, S. Alayoglu, G. A. Somorjai, High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis, Nature Communication Vol. 6, Article # 6538 (2015).
DOI: 10.1038/ncomms7538
[105] X.L. Weng, J.K. Cockcroft, G. Hyett, M. Vickers, P. Boldrin, C.C. Tang, S.P. Thompson, J.E. Parker, J.C. Knowles, I. Rehman, I. Parkin, J.R.G. Evans, J.A. Darr, High-Throughput Continuous Hydrothermal Synthesis of an Entire Nanoceramic Phase Diagram, J. Comb. Chem. 11 (2009).
DOI: 10.1021/cc900041a
[106] Z. Zhang, J.B.M. Goodall, D.J. Morgan, S. Brown, R.J.H. Clark, J.C. Knowles, N.J. Mordan, J.R.G. Evans, A.F. Carley, M. Bowker, J.A. Darr, Photocatalytic activities of N-doped nano-titanias and titanium nitride, J. Eur. Ceram. Soc. 29 (2009).
[107] T. Adschiri, K. Kanazawa, K. Arai, Rapid and Continuous Hydrothermal Synthesis of Boehmite Particles in Subcritical and Supercritical Water, J. Amer. Ceram. Soc. 75 (1992) 2615–2618.
[108] Z.C. Zhang, S. Brown, J.B.M. Goodall, X.L. Weng, K. Thompson, K.N. Gong, S. Kellici, R.J.H. Clark, J.R.G. Evans, J.A. Darr, Direct continuous hydrothermal synthesis of high surface area nanosized titania, J. Alloy Compd. 476 (2009) 451–456.
[109] Man Chen, Cai Y. Ma, T. Mahmud, J. A. Darr, Xue Z. Wang, J. Supercri. Fluids 59 (2011) 131– 139.
[110] A.Y. Sheikh, A.G. Jones, P. Graham, Population balance modelling of particle formation during the chemical synthesis of zeolite crystals: Assessment of hydrothermal precipitation kinetics, Zeolites 16 (1996) 164–172.
[111] P. Poddar, T. Fried, and G. Markovich, First-order metal-insulator transition and spin-polarized tunneling in Fe3O4 nanocrystals, Phys. Rev. B 65(17) (2002) 923-926.
[112] S. P. Sena, R. A. Lindley, H. J. Blythe, C. Sauer, M. Al-Kafarji, and G. A. Gehring, Investigation of magnetite thin films produced by pulsed laser deposition, J. Magn. Magn. Mater. 176(2–3) (1997) 111-117.
[113] D. T. Margulies, F. T. Parker, M. L. Rudee, F. E. Spada, J. N. Chapman, P. R. Aitchison, and A. E. Berkowitz, Origin of the Anomalous Magnetic Behavior in Single Crystal Fe3O4 Films, Phys. Rev. Lett. 79(25) (1997) 5162-5167.
[114] L. Bickford, J. Brownlow, and F. R. Penoyer, Magneto-crystalline anisotropy in cobalt- substituted magnetite single crystals, Proc. IEEE. 104 (1957) 238-244.
[115] C. Medrano, M. Schlenker, J. Baruchel, J. Espeso, and Y. Miyamoto, Quantum open-systems approach to current noise in resonant tunneling junctions, Phys. Rev. B 59(2) (1999) 11857-6.
[116] G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys. 94(5) (2003) 3520-3561.
DOI: 10.1063/1.1599959
[117] S. V. Berkum, J. T. Dee, A. P. Philipse and B. H. Erné, Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel, Int. J. Mol. Sci. 14 (2013) 10162-10177.
[118] Rosensweig, R. Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater. 252 (2002) 370–374.
[119] B. H. Erne, Butter, K. Kuipers, B. W. M.; Vroege, G. J. Rotational diffusion in iron ferrofluids, Langmuir 19 (2003) 8218–8225.
DOI: 10.1021/la0346393
[120] M. Klokkenburg, R. Dullens, W. Kegel, B. Erne, A. Philipse, Quantitative real-space analysis of self-assembled structures of magnetic dipolar colloids, Phys. Rev. Lett. 96 (2006) 037203: 1–037203: 4.
[121] M. Klokkenburg, B. Erne, A. Philipse, Thermal motion of magnetic iron nanoparticles in a frozen solvent, Langmuir 21 (2005) 1187–1191.
DOI: 10.1021/la048385c
[122] M. P. B. Van Bruggen, J. B. A. Van Zon, Theoretical description of a responsive magneto-hydrogel transduction principle. Sens. Actuators A Phys. 158 (2010) 240–248.