Magnetic Nanoparticles: Synthesis and Properties

Article Preview

Abstract:

The discovery of novel materials, processes, and phenomena at the nanoscale and the development of new experimental and theoretical techniques for research provide fresh opportunities for the development of innovative nanosystems and nanostructured materials. Nanomaterials with tailored unique properties have limitless possibilities in materials science. The most widely used synthesis routes for iron oxide nanoparticles are based on precipitation from solution. Most of the nanoparticles available to date have been prepared using chemical route. Physical processes have also been recently developed to produce high quality monodisperse and monocrystalline iron oxide nanoparticles. Magnetite has recently attracted attention because bulk Fe3O4 has a high Curie temperature of 850 K and nearly full spin polarization at room temperature, and due to its wide range of applications in almost all branches of science and technology. Clearly, nanoscale magnetite offers potential for creation of novel technology in multiple fields of study. Opportunities for magnetite nanoparticles to be effectively incorporated into environmental contaminant removal and cell separation magnetically guided drug delivery, imaging of tissue and organs, magnetocytolysis, sealing agents (liquid O-rings), dampening and cooling mechanisms in loudspeakers, high gradient magnetic separation (HGMS) techniques and contrasting agents for magnetic resonance imaging (MRI). Advancement of synthesis and stabilization procedures towards production of uniformly sized, dispersed (potentially embedded) magnetite nanoparticles has clearly inspired creative imagination and application in various fields.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 241)

Pages:

177-201

Citation:

Online since:

October 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Kahn, Molecular Magnetism, VCH Publishers, Inc., New York (1993).

Google Scholar

[2] C. M. Hurd, Varieties of magnetic order in Solids, Contemp. Phys. 23(5) (1982) 469-493.

Google Scholar

[3] B. Bhushan, V. N. Koinkar, Microtribology of metal particle, barium ferrite and metal evaporated magnetic tapes, Wear 181-183 (1995) 360–370.

DOI: 10.1016/0043-1648(94)07012-1

Google Scholar

[4] B. Bhushan, and X. Li, Micromechanical and tribological characterization of doped single-crystal silicon and poly-silicon films for micro-electromechanical systems devices, J. Mater. Res. 12 (1997) 54–63.

DOI: 10.1557/jmr.1997.0010

Google Scholar

[5] U. Ozgur, Y. Alivov, H. Morkoc, Microwave ferrites, Part 1: Fundamental properties, J. Mater Sci: Mater. Electron. 20 (2009) 789-834.

DOI: 10.1007/s10854-009-9923-2

Google Scholar

[6] M. N. Giriya, C. L. Khobaragade, K. G. Rewatkar, R.P. Tandon, Structural analysis and magnetic properties of substituted Ca-Sr hexaferrites, Inter. J. Sci. Engg. Res. 3(10), 2012 1-4.

Google Scholar

[7] Robert C. Pullar, Hexagonal Ferrites: A Review of the synthesis, properties and applications of haxaferrite ceramics, Prog. Mater. Sci. 57 (2012) 1191-1334.

Google Scholar

[8] S. Sun and H. Zeng, Size-controlled synthesis of magnetite nanoparticles, J. Am. Chem. Soc. 124(28) (2002) 8204-8205.

DOI: 10.1021/ja026501x

Google Scholar

[9] S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, and G. Li, Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles, J. Am. Chem. Soc. 126(1) (2004) 273-279.

DOI: 10.1021/ja0380852

Google Scholar

[10] H. Vallhov, J. Qin, S. M. Johansson, N. Ahlborg, M. A. Muhammed, A. Scheynius, and S. Gabrielsson, The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications, Nano Lett. 6(8) (2006).

DOI: 10.1021/nl060860z

Google Scholar

[11] K. Schulze, A. Koch, A. Petri-Fink, B. Steitz, S. Kamau, M. Hottiger, M. Hilbe, L. Vaughan, M. Hofmann, and H. Von Rechenberg, Uptake and biocompatibility of functionalized poly(vinylalcohol) coated superparamagnetic maghemite nanoparticles by synoviocytes in vitro, J. Nanosci. Nanotech. 6(9-10) (2006).

DOI: 10.1166/jnn.2006.484

Google Scholar

[12] M. Mikhaylova, D. K. Kim, N. Bobrysheva, M. Osmolowsky, V. Se-menov, T. . sakalakos, and M. Muhammed, Superparamagnetism of magnetite nanoparticles: Dependence on surface modification, Langmuir 20 (6) (2004) 2472.

DOI: 10.1021/la035648e

Google Scholar

[13] T. Hibma, F. C. Voogt, L. Niesen , Heijden van der, W. J. M. De Jonge, J. Donkers, and P. J. Zaag. van der, Anti-phase domains and magnetism in epitaxial magnetite layers, J. Appl. Phys. 85(8) (1999) 5291-5293.

DOI: 10.1063/1.369857

Google Scholar

[14] A. Petri-Fink, M. Chastellain, A. Juillerat-Jeanneret, A. Ferrari, and H. Hofmann, Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells, Biomater. 26(15) (2005) 2685-2694.

DOI: 10.1016/j.biomaterials.2004.07.023

Google Scholar

[15] M. Taupitz, J. Schnorr, C. Abramjuk, S. Wagner, S. Pilgrimm, H. Hunigen, and B. Hamm , New generation of monomer-stabilized very small superparamagnetic iron oxide particles (VSOP) as contrast medium for MR angiography: preclinical results in rats and rabbits, J. Magn. Reson. Imaging 12(6) (2000).

DOI: 10.1002/1522-2586(200012)12:6<905::aid-jmri14>3.0.co;2-5

Google Scholar

[16] S. Huth, J. Lausier, S. W. Gersting, C. Rudolph, C. Plank, U. Welsch, and J. Rosenecker, Insights into the mechanism of magnetofection using PEI-based magnetofectins for gene transfer, J. Gene. Med. 6(8) (2004) 923-936.

DOI: 10.1002/jgm.577

Google Scholar

[17] J. F. Berret, N. Schonbeck, F. Gazeau, D. E. Kharrat, O. Sandre, A. Vacher, and M. Airiau, Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging, J. Am. Chem. Soc. 128(5) (2006).

DOI: 10.1021/ja0562999

Google Scholar

[18] C. Sun, R. Sze, and M. Zhang, Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI, J. Biomed. Mater. Res. A 78 (3) (2006) 550-557.

DOI: 10.1002/jbm.a.30781

Google Scholar

[19] A. K. Gupta, and S. Wells, Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies, IEEE Trans. Nanobiosci. 3(1) (2004) 66-73.

DOI: 10.1109/tnb.2003.820277

Google Scholar

[20] Z. Li, L. Wei, M. Y. Gao, and H. Lei, One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles, Adv. Mater. 17(8) (2005) 1001-1005.

DOI: 10.1002/adma.200401545

Google Scholar

[21] J. H. Lee, Y. M. Huh, Y. W. Jun, J. W. Seo, J. T. Jang, H. T. Song, S. Kim, E. J. Cho, H. g. Yoon, J. S. Suh, and J. Cheon, Artificially engineered magnetic particle for ultra-sensitive molecular imaging, Nat. Med. 13(1) (2007) 95-99.

DOI: 10.1038/nm1467

Google Scholar

[22] N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, and M. Niederberger, Magnetite Nanocrystals:  Nonaqueous Synthesis, Characterization, and Solubility, Chem. Mater. 17(11) (2005) 3044-3049.

DOI: 10.1021/cm050060+

Google Scholar

[23] M. S. Martina, J. P. Fortin, C. Menager, O. Clement, G. Barratt, C. Grabielle-Madelmont, F. Gazeau , V. Cabuil, and S. Lesieur, Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging, J. Am. Chem. Soc. 127(30) (2005).

DOI: 10.1021/ja0516460

Google Scholar

[24] S. J. Son, P. Reichel, J. B. He, M. Schuchman, and S. B. Lee, Magnetic Nanotubes for Magnetic-Field-Assisted Bioseparation, Biointeraction, and Drug Delivery, J. Am. Chem. Soc. 127(20) (2005) 7316-7317.

DOI: 10.1021/ja0517365

Google Scholar

[25] J. H. Lee, Y. W. Jun, S. I. Yeon, J. S. Shin, and J. Cheon, Dual Mode Nanoparticle Probes forHigh Performance Magnetic Resonance and Fluorescence Imaging of Neuroblastoma. Angew. Chem. Int. Ed. Engl. 45(48) (2006) 8160-8162.

DOI: 10.1002/anie.200603052

Google Scholar

[26] J. L. Lyon, D. A. Fleming, M. B, Stone, P. Schiffer, and M. E. Williams, Synthesis of Fe oxide core/Au shell nanoparticles by iterative hydroxylamine seeding, Nano Lett. 4(4) (2004) 719-723.

DOI: 10.1021/nl035253f

Google Scholar

[27] Y. Deng, C. Wang, X. Shen, W. Yang, L. Jin, H. Gao, and S. Fu, Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells, Chem. – A Eur. J. 11(20) (2005).

DOI: 10.1002/chem.200500605

Google Scholar

[28] W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchansky, Y. Ding, Z. L. Wang, M. Swihart, and P. N. Prasad, A General Approach to Binary and Ternary Hybrid Nanocrystals, Nano Lett. 6(4) (2006) 875-881.

DOI: 10.1021/nl0600833

Google Scholar

[29] E. Quesnel, E. Pauliac-Vaujour, V. Muffato, Modeling metallic nanoparticle synthesis in a magnetron-based naocluster source by gas condensation of sputtering vapour, J. Appl. Phys. 107 (4) (2010) 1023-1031.

DOI: 10.1063/1.3310420

Google Scholar

[30] S. Pratontep, S. J. Carroll, C. Xirouchaki, M. Streun and R. E. Palmer, Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation, Rev. Sci. Instrum. 76 (2005) 045103-6.

DOI: 10.1063/1.1869332

Google Scholar

[31] D. Jezequel, J. Guenot, N. Jouini and F. Fievet, Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics, J. Mater. Res. 10(1) (1995) 77-83.

DOI: 10.1557/jmr.1995.0077

Google Scholar

[32] O. Palchik, J. Zhu and A. Gedanken, Microwave assisted preparation of binary, J. Mater. Chem. 10 (2000) 1251-1254.

DOI: 10.1039/a908795h

Google Scholar

[33] S. Ammar, A. Helfen, N. Jouini, F. Fievet, I. Rosenman, F. Villain, P. Molinie and M. Danot. Magnetic properties of ultrafine cobalt ferriteparticles synthesized by hydrolysis in a polyol medium, J. Mater. Chem. 11 (2001) 186-192.

DOI: 10.1039/b003193n

Google Scholar

[34] Ya-Mei Miao, Qi-Long Zhang, Hui Yang, Huan-Ping Wang, Low-temperature synthesis of nano-crystalline magnesium titanate materials by the sol–gel method, Mater. Sci. Engg. B 128 (2006) 103–106.

DOI: 10.1016/j.mseb.2005.11.019

Google Scholar

[35] B. D. Lee, H. R. Lee, K. H. Yoon, Y. S. Cho, Microwave Dielectric Properties of Magnesium Calcium Titanate Thin Films, Ceram. Int. 31(2005) 143–146.

DOI: 10.1016/j.ceramint.2004.04.001

Google Scholar

[36] Y. Bai, J. Zhou, Z. Gui, L. Li, The magnetic and dielectric properties of multiferroic Sr-substituted Zn2-Y hexagonal ferrites, J. Magn. Magn. Mater. 246 (2002) 140-146.

Google Scholar

[37] Y. Bai, J. Zhou, Z. Gui, Z. Yue, L. Li, Complex Y-Type Hexagonal Ferrites: An Ideal Material for HighFrequency Chip Magnetic Components, J. Magn. Magn. Mater. 264 (2003) 44-49.

DOI: 10.1016/s0304-8853(03)00134-3

Google Scholar

[38] S. M. Abbas, A. K. Dixit, R. Chatterjee, T. C. Goel, Complex permittivity, complex permeability and microwave absorption properties of ferrite-polymer composite, J. Magn. Magn. Mater. 309 (2007) 20-26.

DOI: 10.1016/j.jmmm.2006.06.006

Google Scholar

[39] N.J. Shirtcliffe, S. Thompson, E.S.O. Keefe, S. Appleton, C.C. Perry, Highly aluminium doped barium and strontium ferrite nanoparticles prepared by citrate auto-combustion synthesis, Mater. Res. Bull. 42 (2007) 281-286.

DOI: 10.1016/j.materresbull.2006.06.001

Google Scholar

[40] M. J. Iqbal, M. N. Ashiq, I. H. Gul, Physical, electrical and dielectric properties of Ca-substituted strontium hexaferrite (SrFe12O19) nanoparticles synthesized by co-precipitation method, J. Magn. Magn. Mater. 322 (2010) 1720–1726.

DOI: 10.1016/j.jmmm.2009.12.013

Google Scholar

[41] S.W. Lee, S.Y. An, I. Shim, C.S. Kim, Mössbauer studies of La-Zn substitution effect in strontium ferrite nanoparticles, J. Magn. Magn. Mater. 290-291 (1) (2005) 231-233.

DOI: 10.1016/j.jmmm.2004.11.190

Google Scholar

[42] M. M. Rashad, M. Radwan, M. M. Hessien, Effect of Fe/Ba mole ratios and surface-active agents on the formation and magnetic properties of co-precipitated barium hexaferrite, J. Alloy Compd. 453 (2008) 304-309.

DOI: 10.1016/j.jallcom.2006.11.080

Google Scholar

[43] G. Mu, N. Chen, X. Pan, X. Shen, X. Gu, Preparation and microwave absorption properties of barium ferrite nanorods, Mater. Lett. 62 (2008) 840.

DOI: 10.1016/j.matlet.2007.06.074

Google Scholar

[44] O. Kubo, T. Ido, H. Yokoyama, Properties of Ba ferrite particles for perpendicular magnetic recording media, IEEE Trans. Magn. 18 (1982) 1122-1124.

DOI: 10.1109/tmag.1982.1062007

Google Scholar

[45] W. Zhong, W. Ding, Y. Jiang, N. Zhang, J. Zhang, Y. Du, Q. Yan, Preparation and Magnetic properties of Barium Hexaferrite Nanoparticles produced by the Citrate Process, J. Am. Ceram. Soc. 80 (1997) 3258-3262.

DOI: 10.1111/j.1151-2916.1997.tb03264.x

Google Scholar

[46] A. Ataie, M.R. Piramoon, I.R. Harris, C.B. Ponton, Effect of hydrothermal synthesis environment on the particle morphology, chemistry and magnetic properties of barium hexaferrite, J. Mater. Sci. 30 (1995) 5600-5608.

DOI: 10.1007/bf00356692

Google Scholar

[47] Y. Hakuta, T. Adschiri, T. Suzuki, T. Chida, K. Seino, K. Arai, Flow Method for Rapoidly Producing Barium Hexaferrite Particles in Supercritical water, J. Am. Ceram. Soc. 81 (1998) 2461-2464.

DOI: 10.1111/j.1151-2916.1998.tb02643.x

Google Scholar

[48] V. Chhabra, M. Lal, A.N. Maitra,P. Ayyub, Nanophase BaFe12O19 synthesized from a non-aqueous microemulsion with Ba- and Fe-containing surfactants, J. Mater. Res. 10 (1995) 2689-2696.

DOI: 10.1557/jmr.1995.2689

Google Scholar

[49] V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson, C.E. Johnson, Synthesis and characterization of ultrafine lithium ferrite from a citrate precursor J. Magn. Magn. Mater. 125 (1993) 199-208.

DOI: 10.1016/0304-8853(94)90685-8

Google Scholar

[50] V.K. Sankaranarayanan, Q.A. Pankhurst, D.P.E. Dickson, C.E. Johnson, Synthesis and characterization of ultrafine lithium ferrite from a citrate precursor, J. Magn. Magn. Mater. 130 (1994) 288-292.

DOI: 10.1016/0304-8853(94)90685-8

Google Scholar

[51] W.A. Kaczmarek, B.W. Ninham, A. Calka, Structure and magnetic properties of aerosol synthesized barium ferrite particles, J. Appl. Phys. 70 (1991) 5909-5913.

DOI: 10.1063/1.350103

Google Scholar

[52] M.V. Cabanas, J.M. Gonzalez-Calbet, M. Vallet-Regı, Synthesis of barium hexaferrite by pyrolysis of an aerosol, J. Mater. Res. 9 (1994) 712-716.

DOI: 10.1557/jmr.1994.0712

Google Scholar

[53] K. C. Patil, S. T. Aruna and T. Mimani, Combustion synthesis: An update, Current opinion in Solid State Mater. Sci. 6 (2002) 507-512.

DOI: 10.1016/s1359-0286(02)00123-7

Google Scholar

[54] H. J. Choi, K. M. Lee and J. G. Lee, Partial replacement of Mn ion in LiMn2O4 by Y+3 ions, J. Power Source 103 (2001) 154-159.

Google Scholar

[55] S. Castro, M. Gayoso, J. Rivas, J. M. Greneche, J. Mira and C. Rodriguez, Structural and magnetic properties of Ba-hexaferrite nanostructured particles prepared by combustion method, J. Magn. Magn. Mater. 152 (1996) 61-64.

DOI: 10.1016/0304-8853(95)00450-5

Google Scholar

[56] A. C. Costa, F. M. Morelli, M. R. Kiminami, Microstructural and magnetic properties of Ni1-xZnxFe2O4 synthesized by combustion reaction, J. Mater. Sci. 42(3) (2007) 779–783.

DOI: 10.1007/s10853-006-1440-6

Google Scholar

[57] M. George, A. Mary John, S. S. Nair, P. A. Joy, M. R. Ananraman, Finite size effect on the structural and magnetic properties of sol-gel synthesized NiFe2O4 powders, J. Magn. Magn. Mater. 302(1) (2006) 190-195.

DOI: 10.1016/j.jmmm.2005.08.029

Google Scholar

[58] M. Airimioaei, C. E. Ciomaga, N. Apostolescu, L. Leontie, A. R. Iordana, L. Mitoseriu, M. N. Palamarua, Synthesis and functional properties of the Ni1-xMnxFe2O4 ferrites, J. Alloy Compd. 509(31) (2011) 8065-8072.

DOI: 10.1016/j.jallcom.2011.05.034

Google Scholar

[59] R. V. Mangalaraja, S. Ananthakumar, P. Manohar, F. D. Gnanam, Initial permeability studies of Ni–Zn ferrites prepared by flash combustion technique, Mater. Sci. Engg. A 355 (1–2) (2003) 320–324.

DOI: 10.1016/s0921-5093(03)00100-x

Google Scholar

[60] R. K. Selvan, C. O. Augustin, L. J. Berchmans, R. Saraswathi, Combustion synthesis of CuFe2O4, Mater. Res. Bull. 38(1) (2003) 41–54.

DOI: 10.1016/s0025-5408(02)01004-8

Google Scholar

[61] M. Sertkol, Y. Kōseoglu, A. Baykal, H. Kavas M.S. Toprak, Synthesis and magnetic characterization of Zn0. 7Ni0. 3Fe2O4 nanoparticles via microwave-assisted combustion route, Journal of Magnetism and Magnetic Materials, 22(7) (2010) 866–871.

DOI: 10.1016/j.jmmm.2009.11.018

Google Scholar

[62] P. R. Moharkar, S. R. Gawali, K. G. Rewatkar, S. N. Sable and V. M. Nanoti, Influence of cobalt ions substitution on micro-structure, magnetic and acoustic properties of nanocrystalline calcium hexaferrite, Int. J. Know. Engg. 3 (1) (2012).

Google Scholar

[63] L. Yu, S. Cao, Y. Liu, Thermal and structural analysis on the nanocrystalline NiCuZn ferrite synthesis in different atmospheres, J. Magn. Magn. Mater. 301(1) (2006) 100– 106.

DOI: 10.1016/j.jmmm.2005.06.020

Google Scholar

[64] K.H. Wu, T.H. Ting, M.C. Li, Sol–gel auto-combustion synthesis of SiO2-doped NiZn ferrite by using various fuels, J. Magn. Magn. Mater. 298(1) (2006) 25– 32.

DOI: 10.1016/j.jmmm.2005.03.008

Google Scholar

[65] T. Feried, G. Shemer, G. Markovich, Ordered Two-Dimensional Arrays of Ferrite Nanoparticles, Adv. Mater. 13 (15) (2001) 1158-1161.

DOI: 10.1002/1521-4095(200108)13:15<1158::aid-adma1158>3.0.co;2-6

Google Scholar

[66] C. Liu, A. J. Rondinone, Z. J. Zhang, Synthesis of magnetic spinel ferrite CoFe2O4 nanoparticles from ferric salt and characterization of the size-dependent superparamagnetic properties, Pure Appl. Chem., 72(1-2) (2000) 37-45.

DOI: 10.1351/pac200072010037

Google Scholar

[67] K. Maaz, Arif Mumtaz, S. K. Hasanain, Abdullah Ceylan, Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route, J. Magn. Magn. Mater. 308 (2007) 289-295.

DOI: 10.1016/j.jmmm.2006.06.003

Google Scholar

[68] V. Pallai and D. O. Shah, Synthesis of high-coercivity cobalt ferrite particles using water-in-oil microemulsions, J. Magn. Magn. Mater. 163 (1996) 243- 248.

DOI: 10.1016/s0304-8853(96)00280-6

Google Scholar

[69] M. H. Keyder, Advances in magneto-optic recording technology, J. Magn. Magn. Mater. 83 (1990) 1-5.

Google Scholar

[70] T. Kagotani, D. Fujiwara, S. Sugimoto, K. Inomata, and M. Homma, Enhancement of GHz electromagnetic wave absorption characteristics in aligned M-type barium ferrite Ba1-xLaxZnxFe12-x-y(Me0. 5Mn0. 5)yO19 (x = 0. 0–0. 5; y =1. 0–3. 0, Me: Zr, Sn) by metal substitution, J. Magn. Magn. Mater. E1813-E1815 (2004).

DOI: 10.1016/j.jmmm.2003.12.878

Google Scholar

[71] T. Nakamura, T. Tsutaoka, and K. Hatakeyama, Frequency dispersion of permeability in ferrite composite materials, J. Magn. Magn. Mater. 138 (1994) 319-323.

DOI: 10.1016/0304-8853(94)90054-x

Google Scholar

[72] O. Kabo, T. Ido, and H. Yokoyama, Properties of Ba - Ferrite particles for 2perpendicular2recordings, IEEE Trans. Magn. 18 (1982) 1122-1128.

DOI: 10.1109/tmag.1982.1062007

Google Scholar

[73] W. Zhong, W. P. Ding, and N. Zhang, Key step in synthesis of ultra fine BaFe12O19 by sol-gel technique, J. Magn. Magn. Mater. 168 (1997) 196-210.

Google Scholar

[74] S. E. Jacobo, C. Domingo-Pascual, and R. Rodriguez-Clement, Synthesis of ultrafine particles of barium ferrite by chemical co-precipitation, J. Mater. Sci. 32 (1997) 1025-1030.

Google Scholar

[75] K. Haneda, C. Miyakawa, and H. Kojima, Preparation of High-Coercivity, J. Am. Ceram. Soc. 57 (1974) 354-359.

Google Scholar

[76] N. K. Mukhopadhyay, V. Uhlenwinkel, V.C. Srivastava, Synthesis and Characterization of Bulk Al-Cu-Fe Based Quasicrystals and Composites by Spray Forming, J. Mater. Engg. Perfor. (2015) doi: 10. 1007/s11665-015-1442-0.

DOI: 10.1007/s11665-015-1442-0

Google Scholar

[77] H. Kumazawa, Y. Maeda and, and E. Sada, Further consideration of hydrothermal synthesis of barium ferrite fine particles, J. Mater. Sci. Lett. 14 (1995) 68- 70.

DOI: 10.1007/bf02565290

Google Scholar

[78] V. Pillai, P. Kumar, and D. O. Shah, Magnetic properties of barium ferrite synthesized by using microemulsion mediated process, J. Magn. Magn. Mater. 116 (1992) 299-304.

DOI: 10.1016/0304-8853(92)90105-w

Google Scholar

[79] R. B. Jotania, R .B. Khomane, A. S. Deshpande, C. C. Chauhan, B .D. Kulkarni, Physical and Magnetic Properties of Barium Calcium Hexaferrite Nano- particles Synthesized by Water-in-oil Reverse Micelle and Co-precipitation Techniques, J. Sci. Res. 1(1) ( 2009) 1-13.

DOI: 10.3329/jsr.v1i1.1684

Google Scholar

[80] Gomez-Romero, P. Hybrid organic-inorganic materials. In search of synergic activity, Adv. Mater. 13(3) (2001) 163-174.

DOI: 10.1002/1521-4095(200102)13:3<163::aid-adma163>3.0.co;2-u

Google Scholar

[81] S.C. Wuang, K.G. Neoh, E.T. Kang, D.W. Pack, D.E. Leckb, Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine, J. Mater. Chem. 17 (2007) 3354-3362.

DOI: 10.1039/b702983g

Google Scholar

[82] L. Zhang, and M. Wan, Polyaniline TiO2 composite nanotubes, J. Phys. Chem. B 107 (2003) 6748-6753.

Google Scholar

[83] K. Hosono, I. Matsubara, N. Murayama, S. Woosuck, N. Izu, Synthesis of Polypyrrole/MoO3 Hybrid Thin Films and their Volatile Organic Compound Gas Sensing Properties, Chem. Mater. 17 (2005) 349-354.

DOI: 10.1021/cm0492641

Google Scholar

[84] D. Chowdhury, A. Paul, A. Chattopadhyay, Photocatalytic polypyrole-TiO2- nanoparticles composite, their film generated at air-water interface, Langmuir 21 (2005) 4123-4128.

DOI: 10.1021/la0475425

Google Scholar

[85] G. Qiu , Q. Wang , M. Nie , Polypyrrole Fe3O4 magnetic nanocomposite prepared by ultrasonic irradiation, Macromol, Mater. Engg. 291 (2006) 68- 72.

DOI: 10.1002/mame.200500285

Google Scholar

[86] D. D. Sawall, R. M. Villahermosa , R. A. Lipeles, A.R. Hopkins, Interfacial polymerization of polyaniline nanofibers grafted to Au surfaces, Chem. Mater. 16 (2004) 1606-1608.

DOI: 10.1021/cm0352908

Google Scholar

[87] X. Feng, H. Huang, Q. Ye, J. Zhu, W. Hou, Ag/polypyrrole core-shell nanostructures: Interface polymerization, characterization, and modification by gold nanoparticles, J. Phys. Chem. 111 (2007) 8463-8468.

DOI: 10.1021/jp071140z

Google Scholar

[88] P. Herrasti, A. I. del Rio, J. Recio, Electrodeposition of homogeneous and adherent polypyrrole on copper for corrosion protection, Electrochim. Acta 52 (2007) 6496-6502.

DOI: 10.1016/j.electacta.2007.04.074

Google Scholar

[89] V. C. Srivastava, N. Ellendt, C. Meyer, V. Uhlenwinkel, Bulk synthesis of amorphous and nano‐crystalline materials by spray forming, Mater. Wissenschaft Werkstofftechnik 45(8) (2014) 425-429.

DOI: 10.1002/mawe.201400311

Google Scholar

[90] E. J. Lavernia, Y. Wu, Spray Atomization and Deposition, John Wiley and Sons, West Sussex, England, 1996, p.155–260.

Google Scholar

[91] P.S. Grant, Spray forming, Prog. Mater. Sci. 39 (1995) 497-545.

Google Scholar

[92] V. C. Srivastava, R. K. Mandal, S. N. Ojha, Evolution of microstructure in spray formed Al-18% Si alloy, Mater. Sci. Engg. A 383 (2004) 14-19.

DOI: 10.1016/j.msea.2004.02.031

Google Scholar

[93] P. Shukla, R. K. Mandal, S. N. Ojha, Non equilibrium solidification of undercooled droplets during atomization process, Bull. Mater. Sci. 24 (2001) 547-551.

DOI: 10.1007/bf02706729

Google Scholar

[94] V.C. Srivastava, K.B. Surreddi, S. Scudino, M. Schowalter, V. Uhlenwinkel, A. Schulz, A. Rosenauer, H. -W. Zoch, J. Eckert, Microstructure and mechanical properties of partially amorphous Al85Y8Ni5Co2 plate produced by spray forming, Mater. Sci. Eng. A 527 (2010).

DOI: 10.1016/j.msea.2010.01.057

Google Scholar

[95] V. C. Srivastava, K. B. Surreddi, V. Uhlenwinkel, A. Schulz, J. Eckert, H. -W. Zoch, Formation of Nanocrystalline Matrix Composite during Spray Forming of Al83La5Y5Ni5Co2, Metall. Mater. Trans. A 40 (2009) 450-456.

DOI: 10.1007/s11661-008-9737-5

Google Scholar

[96] E. J. Lavernia, J. D. Ayers, T. S. Srivatsan, Rapid solidification processing with specific application to aluminium alloys, Int. Mater. Rev. 37 (1992) 1-6.

DOI: 10.1179/imr.1992.37.1.1

Google Scholar

[97] P. S. Grant, Solidification in spray forming, Metall. Mater. Trans. A 38 (2007) 1520-1523.

Google Scholar

[98] V.C. Srivastava, R.K. Mandal, S.N. Ojha, K. Venkateswarlu, Microstructural modifications induced during spray deposition of Al-Si-Fe alloys and their mechanical properties, Mater. Sci. Eng. A 471 (2007) 38-42.

DOI: 10.1016/j.msea.2007.04.109

Google Scholar

[99] V.C. Srivastava, V. Uhlenwinkel, A. Schulz, H.W. Zoch, N. K. Mukhopadhyay, S.G. Chowdhury, Synthesis of single phase i-AlCuFe bulk quasicrystal by spray forming, Z. Kristallogr. 223 (2008) 711-715.

DOI: 10.1524/zkri.2008.1032

Google Scholar

[100] V. C. Srivastava, R. K. Mandal, S. N. Ojha, Microstructure and mechanical properties of Al–Si alloys produced by spray forming process, Mater. Sci. Engg. A 304–306 (2001) 555-558.

DOI: 10.1016/s0921-5093(00)01514-8

Google Scholar

[101] V. C. Srivastava, R. K. Mandal, S. N. Ojha, Microstructural evolution during spray forming of an Al-18Si alloy, J. Mater. Sci. Lett. 20 (2001) 27- 32.

Google Scholar

[102] E. Lester, P. Blood, J. Denyer, D. Giddings, B. Azzopardi, M. Poliakoff, "Reaction Engineering: The Supercritical Water Hydrothermal Synthesis of Nano-Particles, J. Supercrit. Fluid 37 (2006) 209–214.

DOI: 10.1016/j.supflu.2005.08.011

Google Scholar

[103] S. Kellici, K. A. Gong, T. A. Lin, S. Brown, R. J. H. Clark, M. Vickers, J.K. Cockcroft, V. Middelkoop, P. Barnes, J.M. Perkins, C.J. Tighe, J.A. Darr, High-throughput continuous hydrothermal flow synthesis of Zn–Ce oxides: unprecedented solubility of Zn in the nanoparticle fluorite lattice, Math. Phys. Engg. Sci. 368 (2010).

DOI: 10.1098/rsta.2010.0135

Google Scholar

[104] C. S. Li, G. Melaet, W. T. Ralston, K. An, C. Brooks, Y. F. Ye, Y. S. Liu, J. F. Zhu, J. H. Guo, S. Alayoglu, G. A. Somorjai, High-performance hybrid oxide catalyst of manganese and cobalt for low-pressure methanol synthesis, Nature Communication Vol. 6, Article # 6538 (2015).

DOI: 10.1038/ncomms7538

Google Scholar

[105] X.L. Weng, J.K. Cockcroft, G. Hyett, M. Vickers, P. Boldrin, C.C. Tang, S.P. Thompson, J.E. Parker, J.C. Knowles, I. Rehman, I. Parkin, J.R.G. Evans, J.A. Darr, High-Throughput Continuous Hydrothermal Synthesis of an Entire Nanoceramic Phase Diagram,  J. Comb. Chem. 11 (2009).

DOI: 10.1021/cc900041a

Google Scholar

[106] Z. Zhang, J.B.M. Goodall, D.J. Morgan, S. Brown, R.J.H. Clark, J.C. Knowles, N.J. Mordan, J.R.G. Evans, A.F. Carley, M. Bowker, J.A. Darr,  Photocatalytic activities of N-doped nano-titanias and titanium nitride, J. Eur. Ceram. Soc. 29 (2009).

DOI: 10.1016/j.jeurceramsoc.2009.02.008

Google Scholar

[107] T. Adschiri, K. Kanazawa, K. Arai, Rapid and Continuous Hydrothermal Synthesis of Boehmite Particles in Subcritical and Supercritical Water, J. Amer. Ceram. Soc. 75 (1992) 2615–2618.

DOI: 10.1111/j.1151-2916.1992.tb05625.x

Google Scholar

[108] Z.C. Zhang, S. Brown, J.B.M. Goodall, X.L. Weng, K. Thompson, K.N. Gong, S. Kellici, R.J.H. Clark, J.R.G. Evans, J.A. Darr,  Direct continuous hydrothermal synthesis of high surface area nanosized titania, J. Alloy Compd. 476 (2009) 451–456.

DOI: 10.1016/j.jallcom.2008.09.036

Google Scholar

[109] Man Chen, Cai Y. Ma, T. Mahmud, J. A. Darr, Xue Z. Wang, J. Supercri. Fluids 59 (2011) 131– 139.

Google Scholar

[110] A.Y. Sheikh, A.G. Jones, P. Graham, Population balance modelling of particle formation during the chemical synthesis of zeolite crystals: Assessment of hydrothermal precipitation kinetics, Zeolites 16 (1996) 164–172.

DOI: 10.1016/0144-2449(95)00116-6

Google Scholar

[111] P. Poddar, T. Fried, and G. Markovich, First-order metal-insulator transition and spin-polarized tunneling in Fe3O4 nanocrystals, Phys. Rev. B 65(17) (2002) 923-926.

Google Scholar

[112] S. P. Sena, R. A. Lindley, H. J. Blythe, C. Sauer, M. Al-Kafarji, and G. A. Gehring, Investigation of magnetite thin films produced by pulsed laser deposition, J. Magn. Magn. Mater. 176(2–3) (1997) 111-117.

DOI: 10.1016/s0304-8853(97)00529-5

Google Scholar

[113] D. T. Margulies, F. T. Parker, M. L. Rudee, F. E. Spada, J. N. Chapman, P. R. Aitchison, and A. E. Berkowitz, Origin of the Anomalous Magnetic Behavior in Single Crystal Fe3O4 Films, Phys. Rev. Lett. 79(25) (1997) 5162-5167.

DOI: 10.1109/intmag.1998.742121

Google Scholar

[114] L. Bickford, J. Brownlow, and F. R. Penoyer, Magneto-crystalline anisotropy in cobalt- substituted magnetite single crystals, Proc. IEEE. 104 (1957) 238-244.

DOI: 10.1049/pi-b-1.1957.0038

Google Scholar

[115] C. Medrano, M. Schlenker, J. Baruchel, J. Espeso, and Y. Miyamoto, Quantum open-systems approach to current noise in resonant tunneling junctions, Phys. Rev. B 59(2) (1999) 11857-6.

Google Scholar

[116] G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles, J. Appl. Phys. 94(5) (2003) 3520-3561.

DOI: 10.1063/1.1599959

Google Scholar

[117] S. V. Berkum, J. T. Dee, A. P. Philipse and B. H. Erné, Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel, Int. J. Mol. Sci. 14 (2013) 10162-10177.

DOI: 10.3390/ijms140510162

Google Scholar

[118] Rosensweig, R. Heating magnetic fluid with alternating magnetic field, J. Magn. Magn. Mater. 252 (2002) 370–374.

DOI: 10.1016/s0304-8853(02)00706-0

Google Scholar

[119] B. H. Erne, Butter, K. Kuipers, B. W. M.; Vroege, G. J. Rotational diffusion in iron ferrofluids, Langmuir 19 (2003) 8218–8225.

DOI: 10.1021/la0346393

Google Scholar

[120] M. Klokkenburg, R. Dullens, W. Kegel, B. Erne, A. Philipse, Quantitative real-space analysis of self-assembled structures of magnetic dipolar colloids, Phys. Rev. Lett. 96 (2006) 037203: 1–037203: 4.

DOI: 10.1103/physrevlett.96.037203

Google Scholar

[121] M. Klokkenburg, B. Erne, A. Philipse, Thermal motion of magnetic iron nanoparticles in a frozen solvent, Langmuir 21 (2005) 1187–1191.

DOI: 10.1021/la048385c

Google Scholar

[122] M. P. B. Van Bruggen, J. B. A. Van Zon, Theoretical description of a responsive magneto-hydrogel transduction principle. Sens. Actuators A Phys. 158 (2010) 240–248.

DOI: 10.1016/j.sna.2010.01.004

Google Scholar